
Reversible Watermarking Technique Using Small-World
Cellular Neural Network

Kazuya Tsuruta ∗ Yoshifumi Nishio†

Abstract — Recently, the authors have proposed Small-World
Cellular Neural Network (SWCNN), which is constructed by in-
troducing some random couplings between cells of the original
Chua-Yang CNN and we have reported some basic results us-
ing the concept of SWCNN. In this paper, we propose an im-
age wartermarking technique that the connection topology of
SWCNN plays the role of “key” and investigate its features.

1 INTRODUCTION

Studies of network map are very important, because
they help us to understand the basic features and re-
quirements of various systems. So far many connection
topologies of network assumed to be either completely
regular or completely random have been studied in the
past. Cellular Neural Network (CNN) model invented
by Chua and Yang in 1988 [1] is a typical of those
completely local connectivities, which is presented as a
preferred implementation of locally and regularly cou-
pled neural networks. The CNN has been successfully
used for various high-speed parallel signals processing
applications such as image processing, pattern recog-
nition as well as modeling of various phenomena in
nonlinear systems [1]-[3]. However, in many cases in
real life, many network topologies such as biological,
technological and social networks are known to be not
completely random nor completely local but somewhere
in between. This was modeled in an interesting work
by Watts and Strogatz in 1998 [4] as the small-world
model. The model is a network consisting of many lo-
cal links and fewer long range ‘short cuts’. Therefore,
it has a high clustering coefficient like regular lattices
and a short characteristic path length of typical random
networks. Interesting examples are shown by collabora-
tion of movie stars, connectivity of internet web pages
or neural nets, etc.

Recently, the authors have proposed Small-World
Cellular Neural Network (SWCNN) [5, 6], which is
constructed by introducing some random couplings be-
tween cells of the original Chua-Yang CNN. In [5, 6]
we have reported some basic results using the con-
cept of SWCNN. In this paper, we propose an image
wartermarking technique that the connection topology
of SWCNN plays the role of “key” and investigate its
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features.

2 NETWORK TOPOLOGY OF WATERMARK
SWCNN

In this section, we describe the connection topol-
ogy of SWCNN for watermark composed of a two-
dimensional M by N array structure.

The watermark SWCNN is obtained by introducing
random couplings between cells in the original Chua-
Yang CNN. We introduce a probability pc, which means
what percentage of CNN cells occur random coupling to
another cell. Namely, we choose a cell c(p, q) that con-
nects to c(i, j) at random over the network. We repeat
this process for all cells with the probability pc.

We assume that, besides its local couplings, each
cell in the array has up to one random coupling to an-
other cell, moreover, the coupling direction is unilat-
eral. Thereby, for M × N array, it has M × N couplings
with maximum pc. Figure 1 shows a sketch map of the
SWCNN consisting of 4 × 4 cells. Obviously, when
pc = 0, the SWCNN is completely the same with the
original CNN, and the maps correponding to 0 < pc < 1
and pc = 1, shown in the middle part and the right hand
side of Fig. 1, respectively.

Increasing randomness
pc=0 pc=1

Figure 1: A two-dimensional watermark SWCNN ar-
chitecture with different probability pc.

The state and output equation of each cell c(i, j) of
the SWCNN is formulated by Eq. (1).

ẋi j(t) = − xi j(t) + I +
∑

kl∈Nr(i, j)

Ai j;kl ykl(t)

+
∑

kl∈Nr(i, j)

Bi j;kl ukl(t) + Mi j;pq wc ypq(t)

yi j(t) =
1
2

(|xi j(t) + 1| − |xi j(t) − 1|)
(i = 1, 2, ...,M, j = 1, 2, ...,N.)

(1)
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where Nr(i, j) denotes the neighbor cells of radius r of a
cell c(i, j); A, B, and I are real constants called as feed-
back template, control template and bias current, re-
spectively; xi j, yi j and ui j denote the state, input and out-
put of the cell, respectively; M(i, j; p, q) describes the
small-world map that is previously created by a program
with probability pc, if there is a coupling between one
cell c(i, j) and another cell c(p, q), then the M(i, j; p, q)
is equal to 1, otherwise zero; and wc stands for the cou-
pling weight between the randomly coupled cells.

In order to investigate the features of the network, we
calculated the characteristic path length L(pc) and the
clustering coefficient C(pc) as varying pc. The charac-
teristic path length L(pc) is defined as the number of
edges in the shortest path between two vertices, aver-
aged over all pairs of vertices [4]. The clustering coeffi-
cient C(pc) is defined as follows; Suppose that a vertex
v has kv neighbours; then at most kv(kv − 1)/2 edges can
exist between them. Let Cv denote that fraction of these
allowable edges that actually exist. Define C(pc) as the
average of Cv over all v [4].
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Figure 2: Characteristic path length and clustering co-
efficient of watermark SWCNN.

The results are shown in Fig. 2. Because we make
a restriction such that one cell has at most one random
coupling, the clustering coefficient does not approach
zero even if pc becomes 1.0. However, the characteristic
path length becomes shorter and the network possesses
the feature of the small-world networks.

3 IMAGE WATERMARKING USING SWCNN

In this section, we describe the watermark technique
using SWCNN. The watermark is a technique to em-
bed some information to the target host image. The
watermark embedded to the host image is used for to
detect a modification, authenticate a image and protect
a copyright. Here, watermarks should be invisible for
observer. The watermark is classified into robust and
fragile technique. A robust watermark is intended to
leave the mark by resisting attacks such as modification
and destroy the mark for copyright protection, mean-

while a fragile watermark is able to detect alteration by
breaking the mark actively.

3.1 Watermark Generator

In CNN literature, pseudo-random pattern generator for
cryptograph and the watermarking technique based on
cellular automaton are described [7, 8]. In our method,
the watermark image is scrambled by randomly cou-
pled cells, and its connection pattern plays the role of
key. Moreover, pc = 1.0 is desirable to distribute the
scrambled image uniformly. For example, we adopted
the template as follows:

A =


0 0 0
0 1 0
0 0 0

 ,
B = 0,
I = 0,

wc = −1.
(2)

Simulated results are shown in Fig. 3. We observe
from this simulation, the SWCNN can scramble the in-
put image and the output pattern is not correlated with
the initial state image. Needless to say, the output image
changes by adopting other keys.

(a) (b)

(c) (d)

Figure 3: (a) 64 × 64 initial state image with pc = 1.0.
(b)-(d) Output images at t = 5τ, 10τ and 50τ.

As already mentioned, the watermark is generated by
the small-world map. Hence, it is able to generate wa-
termark and to embed it to the host (input) image simul-
taneously by SWCNN. The watermark SWCNN tem-
plate form becomes as:

A =


0 0 0
0 a 0
0 0 0

 , B =


0 0 0
0 b 0
0 0 0

 ,
I = 0,

wc = c.
(3)

Thus, the cell’s state equation in the watermark
SWCNN can be rewritten in the following form:

ẋi j = −xi j + a f (xi j) + wi j (4)



where,

f (xi j) = 0.5(|xi j + 1| − |xi j − 1|),
wi j = 0.5c(|xpq + 1| − |xpq − 1|) + bui j.

Since we run the system backwards to recover the
watermark image from marked image, it is necessary to
limit the range of state value |xi j|≤ 1. From Eq. (4), for
the self-feedback a, the dynamic routes are shown in
Fig. 4.

xi, j

.

xi, j-1  0  1

-1

 1
wi, j=1-a

wi, j= -(1-a) slope=a-1

Figure 4: The dynamic routes of watermark SWCNN
with various wi j, where 0<a<1 and black dots in ẋi j-
intercept denote the stable point.

From the above, we assume that the parameters are
satisfy the following conditions;

| a | + | c | + | b | ≤ 1. (5)

3.2 Simulation

In the watermark SWCNN, the number of the key in-
creases drastically as the image size increases. This fea-
ture is suitable to embed a secret information (image).

Here, in order to evaluate the task, the peak signal to
noise ratio (PSNR) is investigated. PSNR is defined as:

PSNR = 10 log
s2

max
1

MN

∑M−1
i=0
∑N−1

j=0 (sui j − syi j )2
(6)

where sui j and syi j represent the pixel values of input and
marked image at cell position C(i, j). And smax is max-
imum value, for 16bit quantized image, s2

max = 655352.
Firstly, a binary Lena image is embedded to the host

image with parameter set as: a = 0.005, b = 0.99 and
c = −0.005. Simulation results are shown in Fig. 5.
The watermarked image Fig. 5(d) contains visually im-
perceptible scrambled Lena image.

The robustness can be improved by increasing the pa-
rameter a and |c|, or decreasing the parameter b. The
simulation results with different parameter settings are
shown in Fig. 6. Figure 6(a) is a host image and
Fig. 6(b)-(f) show the results after watermarking with
a = −c = (1 − b)/2 = 0.01, 0.02, 0.04, 0.06 and 0.08.

(a) (b)

(c) (d)

Figure 5: (a) Input (host) image. (b) Initial state (wa-
termark) image. (c) Transient image at t = 1τ. (d)
Watermarked output image with embedded Lena image
(PSNR=57.34dB).

PSNR=51.34, 45.30, 39.21, 35.61 and 33.03, respec-
tively. In this simulation, the watermark stand out more
clearly and PSNR decreases as the parameters increase.

We run the system backwards to recover the embed-
ded image from the watermarked image, and this is a
private watermark that requires host and marked image.
Ordinarily, the output image is quantized to 8bit gray-
scale image in CNN, but because of quantization error,
it is difficult to recover the image completely. There-
fore, we use 16bit quantized image for this purpose.
The simulation results are shown in Fig. 7. In this sim-
ulation, the parameter set are the same as watermarking
operation. Table 1 shows bit error rate (BER) and PSNR
of recovered watermark image from different key. It
is able to improve key sensitivity using A-Template of
neighbour cells. From Fig. 7, we observed that the wa-
termarking SWCNN is reversible and its mapping plays
the role of key.

In these simulation, we showed binary mark only.
When gray-scale images are used for watermark, re-
coverd image is not lossless. However, the recovered
mark is clearly visible for observer (PSNR of recovered
gray-scale Lenna image is about 45dB).



(a) (b)

(c) (d)

(e) (f)

Figure 6: Zoomed input and marked image. (a) Input
image. (b)-(f) Watermarked image with a=-c=(1-b)/2=
0.01, 0.02, 0.04, 0.06 and 0.08. PSNR=51.34, 45.30,
39.21, 35.61 and 33.03, respectively.

(a) (b)

(c) (d)

Figure 7: Extracting embedded information. (a) Input
image. (b) Marked image. (c) Recovered watermark
with correct key. (d) Output image with wrong key.

Key change rate BER PSNR[dB]

0 (correct key) 0 ∞
0.1 0.046 13.34
0.3 0.134 8.74
0.5 0.221 6.55
0.7 0.308 5.11
1.0 0.444 3.53

Table 1: The results of extracting the embedded image
with different key.

4 CONCLUSIONS

In this article, a watermarking technique using SWCNN
has been proposed and its features are investigated.
We designed template of SWCNN for the watermaked
image reversibly. Moreover, the proposed method is
able to generate watermark and embed to the host im-
age simultaneously. Although the techniques which
use pseudo-random pattern are existing, the proposed
method has shown a new potential of SWCNN. Our im-
portant future researchs are investigations of robustness
of the watermarking SWCNN and analyzing it in more
detail.
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