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Abstract — In our previous research, a complex be-
havior in two coupled chaotic circuits related with
intermittency has been investigated. This paper
provides modeling of the complex behavior using 1-
D map derived from the subcircuit and occurrence
probabilities of different states. The 1-D map is
shown to be useful to make clear the statistical prop-
erties of laminar parts. Further, the basin of initial
values attracted to the different states is shown to
give the information of the occurrence probabilities
of the states.

1 INTRODUCTION

Coupled chaotic circuits systems are good mod-
els to describe various higher-dimensional nonlinear
phenomena in the field of natural science. In par-
ticular, the chaos synchronization and the break-
down of chaos synchronization have attracted many
researchers’ attentions and their mechanisms have
been gradually made clear [1]-[5]. Furthermore,
many researchers consider that complex behavior
around chaos synchronization in coupled oscillatory
circuits are related to information processing of the
brain. We consider that it is very important to in-
vestigate complex behavior around chaos synchro-
nization for future engineering applications to real-
ize “brain computer.”

On the other hand, intermittency chaos is very
interested phenomena [6][7]. Because the intermit-
tency chaos, which has stability and mobility, gains
good performance for various kind of information
processing. We consider that a lot of phenomena
in the world are related to the intermittency chaos.
For example, information processing of the brain,
vegetation in the Arizona Desert and so on. In or-
der to make clear the mechanism of such phenom-
ena in the world, unveiling the roles of intermit-
tency chaos is very important.

In our previous research, a complex behavior in
two coupled chaotic circuits related with intermit-
tency has been investigated [8]. When we set a con-
trol parameter of each chaotic circuit to generate in-
termittency chaos near the three-periodic window,
we have observed a complex behavior such that in-
termittency bursts interrupt synchronizations and
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different synchronizations reappear after the bursts
settle down. We have modeled this interesting com-
plex behavior by a first-order Markov chain with
four states and have confirmed the results obtained
from the Markov chain agree very well with com-
puter simulated results [8]. However, in the mod-
eling by the Markov chain, the transition probabil-
ities between the states are obtained by counting
all of the transitions in plenty of computer simu-
lation. Hence, the Markov chain model needs vast
amounts of calculations when the coupled circuits
system becomes very large.

In this study, we pay our attentions to that the
switching of the synchronization modes in the com-
plex behavior is caused by intermittency bursts of
each chaotic circuit. If we know the timing of gen-
erating bursts in one chaotic circuit, the statisti-
cal properties of the complex behavior could be ex-
plained. Hence, we derive the 1-D Poincaré map
from one chaotic circuit. By investigating this 1-
D map, we predict the statistical property of the
complex behavior generated in the coupled chaotic
circuits. By computer simulations, the predicted
average length of the laminar part is confirmed to
agree with that observed in the coupled chaotic cir-
cuits. Further, the occurrence probabilities of the
different states are obtained from the basin of ini-
tial values for the states.

2 CIRCUIT MODEL

Figure 1 shows the circuit model, which is the asym-
metric version of the circuit investigated in [9]. In
the circuit, two identical chaotic circuits are cou-
pled by a resistor R.

R
-r

C C

-r

L1 L1

L2L2

i 1 i 2

I1 I2

v 1 v 2

Figure 1: Circuit model.

At first, the i − v characteristics of the diodes
are approximated by two-segment piecewise-linear
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functions as

vd(ik) = 0.5(rdik + E − |rdik − E|). (1)

By changing the variables and parameters,
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the normalized circuit equations are given as




dxk

dτ
= β(xk + yk) − zk − γ(x1 + x2)

dyk

dτ
= αβ(xk + yk) − zk − f(yk)

dzk

dτ
= xk + yk (k = 1, 2)

(3)

where

f(yk) = 0.5 (δyk + 1 − |δyk − 1|). (4)

3 COMPLEX BEHAVIOR

Figure 2 shows three different types of synchroniza-
tion states, when the two circuits generate three-
periodic attractors. These three synchronization
states can be obtained by giving different initial
conditions. As we can see from the figures, the two
circuits tend to be synchronized in anti-phase. This
is because the circuits tend to minimize the energy
consumed by the coupling resistor R. There exist
three different peaks in the waveform of the three-
periodic solution. Hence, three different synchro-
nization states could coexist as shown in Fig. 2.
We name the three synchronization states as the
states T1, T2, and T3.
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Figure 2: Time waveforms of three synchronization
states (computer calculated results). α = 7.0, β =
0.152, γ = 0.005 and δ = 100.0. (a) State T1, (b)
State T2, and (c) State T3.

Next, we vary a control parameter of each chaotic
circuit to generate intermittency chaos near the
three-periodic window as shown in Fig. 3. In this
case, we can observe a complex behavior of the
three synchronization states. Namely, intermit-
tency bursts disturb the synchronizations and dif-
ferent synchronizations reappear after the bursts
settle down.
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Figure 3: Intermittency chaos near the three-
periodic window. (a) Computer calculated result.
xk vs. zk. α = 7.0, β = 0.133682, γ = 0.0 and
δ = 100.0. (b) Circuit experimental result. Ik vs.
vk. L1 = 300mH, L2 = 10mH, C = 33nF, r = 735Ω
and R = 0.0Ω.

Figure 4 shows how the three states appear and
disappear in a chaotic way. This diagram shows
the discrete data of x2 only on the cross section
z1 = 0 and x1 < −1.2, namely, the value of x2 only
when the x1 takes the largest valley in Fig. 2. We
also confirmed the same phenomenon in the circuit
experiments [8].
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Figure 4: Time series of synchronization states
disturbed by intermittency chaos (computer calcu-
lated results). α = 7.0, β = 0.133682, γ = 0.005
and δ = 100.0.

4 DERIVATION OF 1-D MAP

We consider that the switching of the synchroniza-
tion states in the complex behavior is caused by in-
termittency bursts of each chaotic circuit. Hence,
if we know the timing of generating bursts in one
chaotic circuit, the statistical properties of the com-
plex behavior could be explained. In this study, we
model the interesting complex behavior by using
1-D Poincaré map derived from one chaotic circuit.

We consider the subcircuit of the circuit model
in Fig. 1. We define the Poincaré section as z = 0
and x < 0. Since y, which is corresponding to the
current through L2, is almost zero for x < 0 because
of the switching characteristics of the diode, the
Poincaré map can be described by only the value
of x approximately. Namely, the Poincaré map of
the subcircuit can be derived as a 1-D map. The
obtained 1-D map is shown in Fig. 5. Further, the



time series of intermittency chaos obtained from the
1-D map is shown in Fig. 6.
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Figure 5: One-dimentional Poincaré map of sub-
circuit. α = 7.0, β = 0.133682, γ = 0.0045 and
δ = 100.0.
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Figure 6: Time series of intermittency chaos in 1-
D map. α = 7.0, β = 0.133682, γ = 0.0045 and
δ = 100.0.

5 ANALYSIS OF 1-D MAP

In order to model the complex behavior observed
in the coupled chaotic circuits, we investigate the
time series obtained from the 1-D map in detail.

At first, we distinguish laminar parts and burst
parts of the intermittency chaos. Because we
treat only the intermittency chaos near the three-
periodic window, we regard three successive se-
quences starting from a point whose value is −0.64
or larger as one-period of the laminar part (see
Fig. 6). Other points are regarded as the burst part.
Next, we count the number of generating periods of
the laminar parts. The probability of each period
of the laminar parts during 21000 iterations of the
1-D map is shown in Fig. 7(a). We can see that
the curve does not obey any simple scaling rules.
Namely, the period of the laminar part is bounded
and the maximum value of the period takes a peak.
We consider that this is the most distinguished fea-
ture of the intermittency chaos of the 1-D map.

In our supposition, if the laminar part changes to
the burst part in one subcircuit, the other subcir-
cuit is also drawn into the burst part. In order to
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(b) P̂ (k) for two 1-D maps.
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Figure 7: Probability distribution of periods of lam-
inar parts.

realize this effect, we have to consider a new proba-
bility function using two 1-D maps. The probability
function P̂ (k) corresponding to the coupled chaotic
circuits is defined by the following equations,




P̂ (1) = 2P (1)

P̂ (k) = 2P (k)

(
1 −

k−1∑

i=1

P (i)

)
(k = 2...N)

(5)
where P (k) denotes the probability of k-period of
laminar part of the 1-D map and P̂ (k) denotes the
probability such that the period of the laminar part
of one 1-D map is k and the period of the laminar
part of the other 1-D map is not less than k. Fig-
ure 7(b) shows the probability P̂ (k) obtained by
using the results in Fig. 7(a) and Eq. (5).

In order to confirm that the coupled chaotic cir-
cuits have the same statistical property, we count
the number of generating periods of the laminar
parts in the data obtained from the circuits The
probability of each period of the laminar parts dur-
ing 21000 rotations in the attractor of the circuit.
is shown in Fig. 7(c). We can say that the distri-
bution is close to that in Fig. 7(b).

Further, we compare the average length of the
laminar parts in the coupled chaotic circuits and
that obtained theoretically by using the probability
P̂ (k) based on the 1-D map. The result is summa-
rized in Tab. 1. We can confirm that the average



length of the laminar parts obtained by using the 1-
D map is similar to that obtained from the original
coupled chaotic circuits. Namely, we can say that
the statistical property of the complex behavior of
the coupled chaotic circuits can be modeled by the
simple 1-D map derived from one subcircuit.

Table 1: Average length of laminar part.
Coupled circuits Two 1-D maps

21.1631 21.5204

6 OCCURRENCE PROBABILITIES OF
THREE STATES

In the previous section, we have shown that the 1-
D map corresponding to the subcircuit is useful to
make clear the statistical properties of the laminar
parts of the coupled circuits. However, there exist
three different states T1, T2 and T3 in the laminar
parts as shown in Figs. 2 and 4, and the above anal-
ysis does not give any information of the occurrence
of the three states.

In this section, we consider the occurrence prob-
abilities of the three states. When the circuits are
in the burst parts, the values of x1 and x2 are not
correlated. Hence, if we know the probabilities gen-
erating the three states when initial values are given
at random in a certain region, the probabilities are
considered to correspond to the occurrence proba-
bilities of the three states in the complex behavior.

Figure 8 shows the basin of the initial values x1

and x2 attracted to the three different states T1, T2

and T3 when y1 = z1 = y2 = z2 are set to 0.0. Be-
cause the solution is always around the hyperplane
x1 + x2 = 0 corresponding to anti-synchronization,
the signs of the ranges of x1 and x2 are not the
same.
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Figure 8: Basin of initial values for three states.

The occurrence probabilities of the three different
states are summarized in Tab. 2. In the tables,
“Coupled circuits” is the data obtained by counting

the states in computer simulations of the circuits
and “Space ratio” is the probabilities obtained by
using the space ratio in Fig. 8. We can see that the
results agree well.

Table 2: Occurrence probabilities.
State Coupled circuits Space ratio

T1 0.5544 0.5440
T2 0.1001 0.1216
T3 0.3455 0.3344

As a result, we can say that the complex behavior
in two coupled chaotic circuits can be modeled by
using the 1-D map derived from the subcircuit and
the occurrence probabilities of the states.

7 CONCLUSIONS

In this study, we have modeled the complex behav-
ior in coupled chaotic circuits with intermittency by
using the 1-D map derived from the subcircuit and
the occurrence probabilities of the states. The 1-D
map has been shown to be useful to make clear the
statistical properties of the laminar parts. Further,
the basin of the initial values attracted to the differ-
ent states has been shown to give the information
of the occurrence probabilities of the states.
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