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1. Introduction

Recently, there have been many papers on the analysis of
transmission lines, because they are becoming more impor-
tant for designing VLSI chips as the operation speed of the
chips becomes higher. On the other hand, a device simula-
tion is also very important to design Integrated Circuits (ICs)
and to understand the qualitative behavior. The methods for
analyzing conductive plates have been proposed. For semi-
conductor devices, the circuit equations are described by par-
tial differential equations and are usually solved by the finite
element techniques. The linearization of the semiconductor
equations are efficient solution for their transient and steady-
state [1-2]. As applications for the resistance calculations,
two basic methods have been proposed. One of them is based
on a boundary element method [3], and the other is a finite el-
ement method [4]. These methods are really time-consuming,
because, to obtain exact solutions, the device must be divided
into many small sections.

Since the middle of last decade, Cellular Neural Networks
(CNNs) have been noted in the fields of circuits and systems
[5-6]. The CNN is an array of fundamental elements, called
cell. Neighbor cells are coupled each other directly, while
distant cells are connected with propagation effects. One
paradigm of CNN applications has been proposed as an im-
plementation of solving Partial Differential Equations (PDEs)
and systems of Ordinary Differential Equations (ODEs) [7-8].
Therefore, CNN has been adopted to simulate various nonlin-
ear spatio-temporal phenomena such as traveling waves, au-
towaves, spiral waves and so on [9].

In this study, we propose an analysis method of potential
propagation in conductive plates based on two-layer CNN.
The computer simulated results show that the two-layer CNN
can simulate the potential propagation in conductive plates
for various sets of circuit parameters.

2. Two–Dimensional Circuits

We consider a conductive plate. In order to analyze the
potential propagation of the conductive plate, we discretize
the plate spatially and propose two-dimensional circuits as

discretized model shown in Fig. 1 [10]. The discrete steps are
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Figure 1: Discretized model.

equidistance in both directions. Hence, the circuit parameters
R andL are the same value in both directions.

We assume the model as the lumped constant circuit,
hence, the state equations of the discretized model are de-
scribed by the following ordinary differential equations.
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(1)

After the normalization of time:
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(3)
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3. Two-Layer Cellular Neural Networks

Cellular Neural Network has given rise to wide interests
in theoretical researches for various generalizations and their
applications in the areas like as image processing, pattern
recognition, motion detection, and computer vision as solving
various types of nonlinear differential equations. In our pre-
vious researches, we have reported various applications using
two-layer CNNs. In the two-layer CNN, the connection be-
tween the first layer and the second layer is given by theC
template.

The state equations and output equations of the two-layer
CNN are described as follows:
[State Equations]

dvx1ij(t)
dt

= −vx1ij(t) +
∑

C(k,l)∈Nr(i,j)

A1(i, j; k, l)vy1kl(t)

+
∑

C(k,l)∈Nr(i,j)

B1(i, j; k, l)vu1kl(t)

+
∑

C(k,l)∈Nr(i,j)

C1(i, j; k, l)vy2kl(t) + I1

dvx2ij(t)
dt

= −vx2ij(t) +
∑

C(k,l)∈Nr(i,j)

A2(i, j; k, l)vy2kl(t)

+
∑

C(k,l)∈Nr(i,j)

B2(i, j; k, l)vu2kl(t)

+
∑

C(k,l)∈Nr(i,j)

C2(i, j; k, l)vy1kl(t) + I2.

(4)
[Output Equations]

vy1ij(t) =
1
2
(|vx1ij(t) + 1| − |vx1ij(t)− 1|)

vy2ij(t) =
1
2
(|vx2ij(t) + 1| − |vx2ij(t)− 1|).

(5)

The cloning templates connecting cells are given as follows:

Am =




Ai−1,j−1 Ai−1,j Ai−1.j+1

Ai,j−1 Ai,j Ai,j+1

Ai+1,j−1 Ai+1,j Ai+1,j+1




Bm =




Bi−1,j−1 Bi−1,j Bi−1.j+1

Bi,j−1 Bi,j Bi,j+1

Bi+1,j−1 Bi+1,j Bi+1,j+1




Cm =




Ci−1,j−1 Ci−1,j Ci−1.j+1

Ci,j−1 Ci,j Ci,j+1

Ci+1,j−1 Ci+1,j Ci+1,j+1




Im = c

(6)

wherem = 1, 2 and c is a constant.Am, Bm, andCm

are feedback templates, control templates, and coupling tem-
plates, respectively. These templates define the behavior of
the two-layer CNNs with input and initial states.

4. Simulation Results

Between the two equations (3) and (4), we can see remark-
able similarity. Both of them are systems of locally intercon-
nected ordinary differential equations. By comparing them, it
is easy to design the cloning templates of the two-layer CNN
describing the two-dimensional circuits as follows:

A1 =




0 0 0

0 1−G
√

L
C 0

0 0 0


 , C1 =




0 0 0

0
√

L
C 0

0 0 0


 ,

B1 = 0, I1 = 0.

(7)

A2 =




0 0 0

0 1−R
√

C
L 0

0 0 0


 , C2 =




0
√

C
L 0√

C
L −4

√
C
L

√
C
L

0
√

C
L 0


 ,

B2 = 0, I2 = 0.
(8)

As illustrated examples, we simulated the two-impulse re-
sponses on the uniform plate for two different circuit param-
eters. One is damped oscillation case, and the other is ideal
lossless case for the same initial condition. The initial state
is shown in Fig. 2, wherei andj mean discretized spaces,
andv means the voltage. Namely, the plate is analyzed by the
two-layer CNN with 100×100 cells.
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Figure 2: Initial state.

4.1. Damped Oscillation

First, we simulate the potential propagation of the plate for
the case of damped oscillation. We used the following tem-
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plates:

A1 =




0 0 0
0 0.9 0
0 0 0


 , C1 =




0 0 0
0 10 0
0 0 0


 ,

B1 = 0 I1 = 0.
(9)

A2 =




0 0 0
0 0.999 0
0 0 0


 , C2 =




0 0.1 0
0.1 −0.4 0.1
0 0.1 0


 ,

B2 = 0 I2 = 0.
(10)

Transient responses are shown in Fig. 3. We observe that
the potential propagation is damped down as time goes. Note
that the scale of the voltage is quite small for (c).

4.2. Ideal Lossless Oscillation

Next, we consider the ideal lossless plate. The inductance
L and the capacitanceC of the plate are the same values as
the damped case, but the resistanceR and the conductanceG
are set to be zero, respectively. The cloning templates for this
case are given as follows:

A1 =




0 0 0
0 1 0
0 0 0


 , C1 =




0 0 0
0 10 0
0 0 0


 ,

B1 = 0, I1 = 0.
(11)

A2 =




0 0 0
0 1 0
0 0 0


 , C2 =




0 0.1 0
0.1 −0.4 0.1
0 0.1 0


 ,

B2 = 0, I2 = 0.
(12)

The transient responses are shown in Fig. 4. We can ob-
serve that the oscillation does not damped down. Note that
the scales of the voltages are the same for (a), (b) and (c).

5. Conclusions

In this study, it has been shown that the two-dimensional
conductive plates can be solved by the framework of the two-
layer CNNs. After discretizing the plate into two-dimensional
circuits, the ODEs describing the circuit was related with the
two-layer CNN equations. By using the relation, the cloning
templates of the two-layer CNN were obtained. The com-
puter simulated results showed that the two-layer CNN could

simulate the potential propagation in conductive plates for
various sets of circuit parameters.

Our future research is how to modify the cloning templates
when some obstacles are put on the conductive plates.
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(c) τ = 100

Figure 3: Potential propagation (damped oscillation).
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(b) τ = 100
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(c) τ = 200

Figure 4: Potential propagation (ideal lossless oscillation).
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