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Abstract— Several people point out that the Hopfield Neu-
ral Network (abbr.NN ) with chaos injection gains the good
performance for solving traveling salesman problems, which is
one of combinatorial optimization problems. In this study, we
investigate the performance of the intermittency chaos injected
to the Hopfield NN working as an associative memory. By
computer simulations, the rate and the speed of the convergence
to an embedded pattern are evaluated. Furthermore, in order to
confirm the reason of the good ability of intermittency chaos, we
carry out the same simulation using the time series produced by
the Markov chain model. Simulated results show that the Markov
chain model is good enough to gain similar performance of the
intermittency chaos.

I. I NTRODUCTION

Intermittency chaos [1] is deeply related tothe edge of
chaos [2] and many people suggest that such a behavior
between order and chaos gains better performance for various
kinds of information processing than fully developed chaos.
One good example of this is an application of chaos to
the Hopfield NN (Hopfield NN) [3] solving combinatorial
optimization problems to avoid trappings of the solutions into
a local minimum. If we choose connection weights between
neurons appropriately according to given problems, we can
obtain a good solution by the energy minimization principle.
However, the solutions are often trapped into a local minimum
and do not reach the global minimum. In order to avoid this
critical problem, several people proposed the method adding
some kinds of noise to the Hopfield NN. Hayakawaet al.
pointed out that chaos near the three-periodic window of the
logistic map gains the best performance for solving traveling
salesman problems (TSP) [4]. The authors have investigated
the performance of the Hopfield NN solving combinatorial
optimization problems when intermittency chaos, which is the
phenomenon on the edge of chaos, is inputted to the neurons
as noise [5]-[7]. By computer simulations, the intermittency
chaos has been confirmed to gain better performance to escape
out of local minima than fully-developed chaos. However, only
the results on the combinatorial optimization problems can not
conclude that the intermittency chaos has an excellent ability
to escape out of local minima of the Hopfield NNs.

In this study, the performance of the Hopfield NN working
as an associative memory is evaluated when intermittency
chaos is inputted as noise. In the computer simulations, we
consider the Hopfield NN with 400 neurons. In order to

investigate the performance of the network under difficult
conditions, we prepare an input binary pattern at random and
produce several binary patterns to be stored whose distances
from the input pattern are the exactly same. By computer
simulations, the rate and the speed of the convergence to
an embedded pattern are evaluated. Furthermore, in order to
confirm the reason of the good ability of intermittency chaos,
we carry out the same simulation using the time series pro-
duced by the Markov chain model that have already proposed
by the authors [8]. Simulated results show that the Markov
chain model is good enough to gain similar performance of
the intermittency chaos.

II. H OPFIELD NN
WORKING AS ASSOCIATIVE MEMORY

Associative memory is a system which returns a stored
pattern that is similar to a presented pattern. Noisy patterns
can be corrected or distorted patterns can be recognized by a
well-constructed associative memory.

The Hopfield NN is used as an associative memory by
exploiting the property that the network has multiple stable
states. Namely, if the parameters of the network can be decided
in such a way that the patterns to be stored become stable states
of the network, the network produces a stored pattern that is
similar to an input pattern.

The energy function of the Hopfield NN withN neurons and
M stored binary patterns is defined by the following equation.

E = −1
2

N∑

i=1

N∑

j=1

wijxixj −
N∑

i=1

θixi (1)

wherewij is the weight betweeni-th neuron andj-th neuron,
and θi is the threshold of thei-th neuron. They are given as
follows.

wij =

8>><>>:
MX

m=1

(2xmi − 1)(2xmj − 1) (i 6= j)

0 (i = j)

(2)

θi = 0. (3)



The states of the neurons are asynchronously updated due
to the following difference equation:

xi(t + 1) = g




N∑

j=1

wijxj(t) + θi + βzi


 (4)

whereg is a sigmoidal function defined as follows:

g(x) =
1

1 + exp
(
−x

ε

) (5)

zi is the intermittency chaos or the fully-developed chaos, and
β limits the amplitude of the injected time series. Figure 1
shows a conceptual neuron model for this NN.

In this application, firing of neurons is decided by the output
value of more than 0.5.
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Fig. 1. Neuron model.

III. C HAOS NOISE

In this section, we describe chaos noise injected to the
Hopfield NN. The logistic map is used to generate chaos noise:

ẑim(t + 1) = αẑim(t)(1− ẑim(t)). (6)

Varying parameterα, Eq. (6) behaves chaotically via a period-
doubling cascade. When we inject chaos noise to the Hopfield
NN, we normalizeẑim by Eq. (7).

zim(t + 1) =
ẑim(t)− z̄

σz
(7)

Wherez̄ is the average of̂z(t), andσz is the standard deviation
of ẑ(t). Figure 2 shows an example of the time series of the
intermittency chaos near the three-periodic window. As we can
see from the figure, the intermittency chaos could be divided
into two phases; laminar part of periodic behavior with period
3 and burst part of spread points over the invariant interval.
As increasingα, the ratio of the laminar parts becomes larger
and finally the three-periodic window appears.

For the comparison, we also carry out computer simulation
for the case that fully-developed chaos and uniform random
noise in Figs. 3 and 4 are injected to the Hopfield NN.
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Fig. 2. Intermittency chaos (α = 3.8274).

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

��� 


��� �

�

� ����� ���� ���� ����� ���� ����� 	��� 
��� ����� �������

����

�

Fig. 3. Fully-developed chaos (α = 4.0000).

IV. SIMULATED RESULTS

In the computer simulations, we consider the Hopfield NN
with 400 neurons. In order to investigate the performance of
the network under difficult conditions, we prepare an input
binary pattern at random and produce several binary patterns
to be stored whose distances from the input pattern are the
exactly same. The Hamming distancedH is used to evaluate
the convergence of the network. Namely, the convergence time
is defined as the iteration number of the network when the
Hamming distance between the output of the network and one
of the stored patterns becomes zero.

A. Convergence Speed

Typical results for 8 stored patterns when the initial Ham-
ming distance is fixed asdH = 150 is shown in Fig. 5. The
horizontal axis is time and the vertical axis is the Hamming
distance. Figure 5 (a) shows the case of intermittency chaos
injection, (b) shows the case of fully-developed chaos injec-
tion, (c) shows the case of uniform random noise injection,
and (d) shows the case of no noise. In these figures, we can
see that the case of no noise does not achive the convergence
and that the cases of noise injections succeed in converging
to one of the embedded patterns. Especially, we confirm that
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Fig. 4. Uniform random noise.

the intermittency chaos can converge quicker than the fully-
developed chaos and the uniform random noise.

Next, we carry out the simulations when the input patterns
are divided into two groups with different initial Hamming
distances. Typical results for 10 stored patterns are shown in
Fig. 6. The initial Hamming distance of one group of 5 patterns
are fixed isdH = 190, and the initial Hamming distance of
the other group is fixed asdH = 140. In these figures, we
can see the similar results to the 8 patterns case of the good
performance of the intermittency chaos and that the cases of
noise injections succeed in converging to one of the embedd
patterns in the small Hamming distance group.

B. Markov Chain Modeling

In order to clear up the reason of the good ability of
the intermittency chaos, we have proposed the modeling
method of the intermittency chaos by using the Markov chain
model [8]. This Markov chain model was made by imitating
some characteristics of the intermittency chaos; “existing
laminar parts and burst parts” and “distribution of period of
laminar part”. If the Markov chain model got the similar
performance to the intermittency chaos, we can explain the
reason of the good ability of the intermittency chaos by using
these characteristics.

We explain how to make the Markov chain model. At first,
we distinguish the laminar part and the burst part of the inter-
mittency chaos. Because we treat only the intermittency chaos
near the three-periodic window, we regard three successive
sequences starting from a point whose value is 0.9444 or more
as one-period of the laminar part. Other points are regarded
as the burst part. In order to make the Markov chain model
precisely, we counted the period of the laminar parts. The
frequency of each period of the laminar part during 100000
iterations of the logistic map is shown in Fig. 7. We can see
that the curve does not obey any simple scaling rules. Namely,
the period of the laminar part is bounded and the maximum
value of the period takes a peak. We consider that this is the
most distinguished feature of the intermittency chaos.

In order to model the above-mentioned feature of the
intermittency chaos, we proposed the Markov chain as shown
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Fig. 5. Speed of convergence (8 patterns). Initial Hamming distance of all
patternsdH = 150.
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Fig. 6. Speed of convergence (10 patterns). Initial Hamming distance of one
group of 5 patterns isdH = 190 and initial Hamming distance of the other
group isdH = 140.
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Fig. 7. Distribution of period of laminar part. (Intermittency chaos for
α=3.827940.)

in Fig. 8. In this Markov chain, the stateS0 corresponds to
the burst part and the statesS1, S2, · · · , SL correspond to
the laminar parts where the subscriptk of Sk indicates the
period of the continuing laminar part andL is the maximum
period of the laminar part. In the stateS0, three points whose
values are uniformly spread over the interval [0.160, 0.956]
are generated. In the stateSk (k 6= 0), three successive points
{0.956, 0.160, 0.514} corresponding to the three-periodic
points of the logistic map are generated. The conditional
probabilitiesP (Sk|Sl) means the transition probability from
the stateSl to the stateSk, and

P (Sk+1|Sk) + P (S0|Sk) = 1 (0 ≤ k < L) (8)

must be satisfied.
If we denote the stationary probability for the stateSk

as Q(Sk), the transition probabilities satisfy the following
equations.

Q(S0) =
L−1∑

l=0

P (S0|Sl)Q(Sl) + Q(SL) (9)

Q(Sk) = P (Sk|Sk−1)Q(Sk−1) (0 < k ≤ L) (10)

L∑

k=0

Q(Sk) = 1. (11)
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Fig. 8. Markov chain.
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Fig. 11. Convergence speed (Sconv).
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Fig. 9. Time series of the Markov chain model forL=15.

We derive the stationary probabilities of the Markov chain
from the simulated data of the intermittency chaos by counting
the number of the corresponding state. Further, the transition
probabilities are calculated from the stationary probabilities by
using Eqs. (9) and (10).

Figure 9 shows an example of time series obtained from
the Markov chain model forL = 15. The transitions between
the states are decided by using a random function according to
the obtained transition probabilities and the values in the burst
parts are also given by using a random function. In order to
check the statistical property of the obtained time series, we
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Fig. 10. Distribution of period of laminar part. (Markov chain model for
L=15.)

counted the period of the laminar part. The result is shown in
Fig. 11. We can say that the distribution is very close to that
in Fig. 8.

C. Evaluation Method

In order to investigate the performance of the network under
difficult conditions, we proposeSconv to evaluate convergence
speed more precisely.Sconv is defined by Eq. (12).

Sconv = 1− min[ Tconv, Nmax ]
Nmax

(12)



whereNmax is the given upper limit of the iteration number
of the simulation. Namely, if the network dose not converge
to any stored patterns during the given iteration, the value of
Sconv is zero.

Computer simulations are carried out for various conditions.
Typical results for 5 stored patterns is shown in Fig. 11. For
this simulation, the amplitude of the injected noise isβ =
50.0. The parameter of the Hopfield NN isε = 0.02, and the
maximum iteration number of the network is fixed asNmax =
10000. The horizontal axis is the Hamming distance between
the input pattern and the stored patterns and the vertical axis
is the average value ofSconv in 100 trials.

The results show that the intermittency chaos and the fully-
developed chaos have much better performance than the case
of no noise. Furthermore, we consider that the convergence
speed of the intermittency chaos is quicker than the fully-
developed chaos in wide range. And, the Markov chain model
is good enough to gain similar performance of the intermit-
tency chaos.

V. CONCLUSIONS

In this study, the performance of the Hopfield NNs working
as an associative memory has been evaluated when the inter-
mittency chaos is inputted as noise. By computer simulations,
the rate and the speed of the convergence to an embedded pat-
tern were investigated. We confirmed that the noise injection
succeeds in converging to one of the embedded patterns, and
the intermittency chaos is better than fully-developed chaos.
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