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Abstract— In this paper, novel types of multimode asyn-
chronous oscillations in the coupled multi–state chaotic cir-
cuits are investigated. Each chaotic circuit can behave asyn-
chronously both chaotic or periodic oscillation at the same
parameters. Because it has a hard nonlinearity of the resis-
tor with five segments piecewise linear regions, the both dif-
ferent oscillation modes are separated. A design scheme of
the piecewise linear elements constructed by using electrical
parts is proposed. Further results of some types of multimode
oscillations in numerical simulation and circuit experiment
are also shown.

1. Introduction

The dynamics of chaotic multimode oscillations is still
considerable interest from the viewpoint of both natural
scientific fields and several applications. They have been
confirmed in several systems, e.g., coupled van der Pol
oscillators[1], laser systems[2], and so on. On the other hand,
many types of chaotic systems and circuits have already been
proposed and investigated in detail. If the active elements in-
cluding in the systems have complexity constructed by com-
pound nonlinear elements, it can be easily consider that they
yield several interesting features. There are famous chaotic
attractors such a double-scroll family[3],n-double scroll[4]–
[6] and scroll grid attractors[7]. The purpose of our study is
to clarify coexistence of both chaotic and non–chaotic behav-
ior in the chaotic systems. Further complex behavior in the
large scale network of the coupled chaotic circuits are also
investigated.

In this study, we investigate a novel type of multimode
asynchronous oscillations on the coupled multi–state chaotic
circuits. There is a typical three dimensional autonomous
chaotic system proposed by Inaba[8], which consists of three
memory elements, some diodes and designed negative resis-
tors. It is well known that it can behave as Rössler type
chaotic motions. We substitute a symmetrical continuous
five segments piecewise linear resistor for the negative ac-
tive resistor including in the chaotic circuit. This proposed
circuit can behave both chaotic and periodic motions at the
same parameters when we supply with different initial con-
ditions. Although it may be considered that this is similar
to the chaotic systems[9][10] at a glance, those systems are
different from stability at the origin. Hence it is excited at
the origin because of negative resistance. Generally it can
be constructed a concept for complicated structure of chaotic
attractors to make many equilibrium points. In the past our
works, we had presented and confirmed that multi-state os-
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Figure 1: Schematic figure for the chaotic circuit, and a typi-
cal characteristic of the diode model with polarities.
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Figure 2: Proposed chaotic circuit with piecewise linear re-
sistors.

cillations both chaotic and non–chaotic (limit cycle) can be
generated asynchronously at the same parameters on the com-
puter simulations [11] and that realization on the real circuits
[12]. In this paper, firstly the design scheme of piecewise
nonlinear segments constructed by electrical elements is ex-
plained. Secondary both chaotic and periodic oscillations at
the same parameters which can be confirmed in numerical
simulations and circuit experiment are shown. Further, the
results for several types of multimode oscillations on the cou-
pled chaotic circuits are also shown.

2. Model Description
A well–known chaotic circuit proposed by Inaba and

Saito[8] is shown in Fig. 1 andi–v characteristic of a typical
diode model with polarities also is also shown. The variable
vd(iL2) is a function depending on the current through their
diodesD in Fig. 1, which determines their chaotic dynamics.

In this study, we substitute a symmetrical continuous five
segments piecewise linear resistor for the negative active re-
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Figure 3: Design method forv–i characteristic of a piecewise linear resistor in the chaotic circuit. Characteristics of (a) Nr1,
(b) diodes and one resistor, (c) Nr2 and ideal diodes with polarities, (d) compound characteristics of NR connected by (a) to
(c) in parallel.

sistor including in the chaotic circuit. The designed chaotic
circuit is shown in Fig. 2. The piecewise linear resistor can
be easily constructed by a connection of some components in
parallel as shown in Fig. 3(a)–(c), and then compound char-
acteristics ofNR can be illustrated as shown in (d).

The circuit equation can be normalized when we choseVd
for a threshold voltage value of the diodes by changing the
following variables and parameters as follows.

iL1 =
√

C

L1
Vd x , iL2 =

√
C

L1
Vd y ,

v = Vd z , t =
√

L1C dτ , “ · ” =
d

dτ
,

β =
L1

L2
, γ = g

√
L1

C
, δ = rs

√
C

L1

(1)

whereg is a linear negative conductance value ofNR if we
consider the negative resistor as an ideal. Further let us con-
sider that the part of negative resistance in Fig. 1 replaces to
h(z) as a function of voltage sourcez, then the circuit equa-
tions can be rewritten by





ẋ = z

ẏ = β
(
z − f(y)

)

ż = −(x + y)− h(z)
(2)

f(y) =
1
2

{
|δy + 1| − |δy − 1|

}
. (3)

where f(y) is a function of the currenty and h(z) is a
function of the voltagez, respectively. The functionh(z)
which can be designed by symmetrical five segments piece-
wise linear with respect to the origin for the parameters
four breakpoints at{±Bp1, ±Bp2} and five slopes by
{m0,m1,m2,m1,m0} is described with a canonical form as
follows.

h(z),m0γ
∗z+

γ∗

2

{
(m0−m1)

(|z−Bp2|−|z+Bp2|
)

+(m1−m2)
(|z−Bp1|−|z+Bp1|

)} (4)

whereγ∗ is a basic variable parameter, hence valuesmk(k =
0,1,2) mean the ratio to the valueγ∗.

3. Circuit Experiment and Simulation Results
The circuit experiment results by using real implemented

circuit are shown. In order to realize the nonlinear charac-
teristic of NR, we designed a piecewise linear resistor con-
structed by using some OP amps(TL082CP) and resistors.
The details technique is explained in Ref. [13]. The nonlin-
ear resistor is realized by two OP amps, some diodes and DC
voltage which is used for setting the threshold voltage strictly,
and resistors. The circuit parameters chosen in this simulation
are as follows.

L1 = 123.1[mH], L2 = 10.2[mH], C = 68.7[nF],
R1 = 33.2 [kΩ], R2 = 21.7 [kΩ], R3 = 1.22 [kΩ],
R4 = 196 [Ω], R5 = 333 [Ω], R6 = 1.47 [kΩ],
R7 = 10.3 [kΩ], E1 = 2.78 [V], E2 = 4.80 [V].

Normally, the voltagev of the circuit oscillates in the area of
the threshold voltage between around± Vd (Vd ' ±5.6[V])
because of a breakpoint at the part ofL2 and diodes. Chaotic
and periodic attractors are shown in Fig. 4. Both chaotic and
periodic attractors can be observed in the same circuit param-
eters.

Some numerical simulation results are also shown. The
other parameters areβ = 10.0,γ∗ = 0.76, δ = 100, and con-
struction of the piecewise linear characteristics form are real-
ized byBp1 = 0.30,Bp2 = 0.56,m0 = −1.0, m1 = 1.0 and
m2 = −0.5. It is noticed that values of these breakpoints are
normalized by threshold voltageVd of the diodes with polar-
ities connected toL2. If we choseVd between breakpoints
Bp2 andBp3 and it is assumed that the value of breakpoint
Bp3 is enough larger thanVd, it can be ignored the area over
the voltage±Bp3 in the computer calculation. Therefore five
segments regions drawn in Fig. 3(d) are used dynamically and
this canonical form of five segments piecewise linear function
was also only described in Eq. (4). In order to be accuracy nu-
merical calculation, the boundary of switching of the diodes
is calculated by using bisection method. Figure 4(d) and (e)
show attractors forγ∗ = 0.76 when the initial conditions are
changed differently. Limit cycle (e) and chaotic attractor (d)
can be confirmed coexistence at the same parameters. When
γ∗ increases, this oscillation mode bifurcates to chaos from
one periodic state via period doubling bifurcation in the out-
side region the following route while keeping the limit cycle
in the inside region. Oscillation of symmetrical 1-period→
asymmetrical 1-period→ bifurcates to 2n period→ asym-
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Figure 4: Some snapshots of the circuit experiment and nu-
merical simulation. (a)v–i characteristics of the designed
piecewise linear resistor, horizontal: 5[V/div]. (b) chaotic at-
tractor, (c) limit cycle, horizontal: 2[V/div]. Threshold volt-
age of one diodevth ' 0.78 [V]. Corresponding results (d)
and (e) obtained by numerical calculation onto thez–x plane
for the parametersβ = 10.0, γ∗ = 0.76, δ = 100, Bp1 =
0.30,Bp2 = 0.56,m0 = −1.0, m1 = 1.0 andm2 = −0.5.

metrical slight chaos→ symmetrical fluttered chaos. We can
observe that both two oscillation modes exist separately at the
same parameters. Hereby we call this this circuit a multi–state
chaotic circuit(abbr. MSCC).

4. Multimode Oscillations in Coupled MSCCs
Here we consider the case of the coupled two MSCCs by

an inductor as shown in Fig. 5. By using KCL at the loop of
the inductorsL0, L11 andL21, the circuit equations can be re-
duced to the six–dimensional differential equations. Further
we use a new parameter asα = L1/L0, by changing param-
eters and variables similar to Eq. (2), the circuit equation can
be described as follows.



ẋk = zk

ẏk = β
(
zk − f(yk)

)

żk = (−1)kα(x1 − x2)− (xk + yk)− h(zk).
(5)

wherek is a number of the circuit(k = 1,2.), andα corre-
sponds to the strength of coupling.

Some numerical and circuit experiment results are shown.
We can change valuesγ∗ andmk as control parameters. In
this case, four asynchronous oscillation modes could be con-
firmed consequently by numerical simulations when the ini-
tial conditions are varied. These simulation results are shown
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Figure 5: Circuit model of two MSCCs coupled by an induc-
tor.

in Fig. 6 for the case of the parameterα = 0.80,γ∗ = 0.480,
and other parameters are the same used in the section 3, from
the left attractor ofz1–x1, attractor ofz2–x2 and synchroniza-
tion state ofz1–z2 projection respectively. Figure 6(a) shows
an in-phase synchronous state of small size periodic attrac-
tors. Figure 6(b) shows an anti-phase synchronous state of
small size periodic attractors. Figure 6(c) shows an anti-phase
synchronous state of large size chaotic attractors. Figure 6(d)
shows a double-mode asynchronous state of large size chaotic
and small size periodic motions. These all simulation results
are confirmed at the same parameters. Multimode oscillation
means that it consists several types of oscillation simultane-
ously. The multimode oscillations were confirmed in the pro-
posed coupled MSCCs.

Some circuit experimental results are shown in Fig. 7. At-
tractors betweenv1 andiL11, synchronization state between
v1 andv2 are shown. Several types of oscillation modes can
be observed. Figure 8 shows a time waveform ofv1 and its
FFT spectrum in the case of double-mode oscillations. This
one MSCC oscillates around 1.73[kHz] as a fundamental fre-
quency. It can be easily calculated from the circuit param-
eters. We can confirm that two peaks and wide band fre-
quencies are observed from the FFT result. The highest peak
is certainly located at around this point. Therefore chaotic
and non-chaotic oscillations in the two circuits are generated
alternatively, we can observe the double-mode oscillations
in the coupled circuits. Besides we can also confirm sev-
eral types of multimode oscillations, i.e., in–phase and anti–
phase synchronization of periodic oscillations, double-mode
chaotic oscillations, unfortunately except for an anti–phase
chaotic synchronization mode from the circuit experiment.

5. Conclusions
In this study, we have investigated multimode oscilla-

tions in the coupled multi–state chaotic circuits by numeri-
cal simulation and circuit experiment. Further coexistence of
four types oscillation modes, i.e., in-phase limit cycle, anti-
phase limit cycle, anti-phase chaotic synchronization, and
double-mode asynchronous of both chaotic and periodic os-
cillations have been observed in coupled MSCCs by an in-
ductor. These chaotic behavior observed in this study are
expected to yield new chaotic phenomena in several types
of coupled chaotic systems, e.g., chaotic itinerancy, spatio–
temporal chaos, multi–agent systems, and inherent emergent
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Figure 6: Four oscillation modes exist at the same parame-
ters: α = 0.80,β = 10.0 andγ∗ = 0.480. (a) in-phase syn-
chronous limit cycle, (b) anti-phase synchronous limit cycle,
(c) anti-phase chaotic synchronous attractor, (d) double-mode
oscillations both of two different attractors chaotic and small
size limit cycle.

property, in which concerned with current topics.

References
[1] S.P.Datardina, D.A.Linkens,IEEE Trans. Circuits Syst., vol.

25, no. 5, pp. 308–315, 1978.
[2] A.Uchida, Y.Liu, I.Fischer, P.Davis, T.Aida,Phys. Rev. A, vol.

64, pp. 023801, 2001.
[3] L.O.Chua, M.Komuro, T.Matsumoto,IEEE Trans. Circuits

Syst.–I, vol. 33, no. 11, pp. 1072–1118, 1986.
[4] J.A.K.Suykens, J.Vandewalle,IEEE Trans. Circuits Syst.–I,

vol. 40, no. 11, pp. 861–867, 1993.
[5] M.Wada, Y.Nishio, A.Ushida,Proc. of ISCAS’99, vol. 5, pp.

487–490, 1999.
[6] G.Zhong, K.Man, G.Chen,Int. J. of Bif. and Chaos, vol. 12,

no. 12, pp. 2907–2915, 2002.
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Figure 7: Some snapshots from circuit experiment results for
the following parameters; L0 = 183.3[mH], L1 = 123.1[mH],
L2 = 10.2[mH], C = 68.7[nF], R1 = 33.2 [kΩ], R2 = 21.7 [kΩ],
R3 = 1.22 [kΩ], R4 = 196 [Ω], R5 = 333 [Ω], R6 = 1.47 [kΩ],
R7 = 10.3 [kΩ], E1 = 2.78 [V], E2 = 4.80 [V], horizontal:
5[V/div]. (a) in-phase synchronous limit cycle, (b) anti-phase
synchronous limit cycle, (c) double-mode oscillations.
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Figure 8: Snapshots of a time waveform and a FFT spectrum
at the double-mode chaotic oscillations. (a) time waveform,
horizontal: 5[msec/div], vertical: 2.5[V/div], (b) FFT, hori-
zontal: 500[Hz/div], vertical: 400[mV/div].
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