Two Chaotic Self-Oscillatory Circuits Coupled by Diodes

Yasuteru Hosokawa† and Yoshifumi Nishio‡

†Shikoku University
Furukawa, Ohjin, Tokushima, Japan
Phone:+08-88-665-1300
FAX:+08-88-665-9928
Email:hosokawa@keiei.shikoku-u.ac.jp

‡Tokushima University
2-1 Minami-Josanjima, Tokushima, Japan
Phone:+81-88-656-7470
FAX:+81-88-656-7471
Email:nishio@ee.tokushima-u.ac.jp

1. Introduction

Many researchers have been investigating chaotic circuits. For instance, proposing new chaotic circuit, analyzing generated phenomena by the chaotic circuit, development of its applications and so on. In particular, many three-dimensional chaotic self-oscillatory circuits are proposed [1][2]. These circuits are investigated in detail and there are many its applications. Most of these circuits include a diode or piecewise linear function as shown in Fig. 3. We define the parameters and variables:

\[
\begin{align*}
\alpha &= \frac{1}{\sqrt{C_1L_1}}, \\
\beta &= \frac{1}{\sqrt{C_2L_2}}, \\
\gamma &= \frac{1}{\sqrt{C_3L_3}}, \\
\delta &= \frac{1}{\sqrt{C_4L_4}}, \\
\varepsilon &= \frac{1}{\sqrt{C_5L_5}}, \\
\end{align*}
\]

Figure 1 shows a proposed system. The system consists of two chaotic self-oscillatory circuits as shown in Fig. 2. In this study, the diode \(D_b\) of the circuit is utilized as a coupling element. The diode is disconnected as shown in Fig. 2 and it is connected to the node which disconnected from the other diodes. Therefore, the proposed system consists of two circuit only. Each of negative resistors is approximated as a linear

2. System Model

Figure 2: chaotic self-oscillatory circuits proposed by Shinriki et al.

3. Chaotic Wandering and its Control

3.1. Experimental Results

Some kind of chaotic attractors are observed in the circuit experiment. Figures 4, 5 and 6 show the circuit exper-
iment results. In Figs. 4, four attractors are observed. In this case, these results are observed on same parameters. The observed attractor depend on an initial state only. In Figs. 5, two attractors are observed. These results are also observed in same parameters. In another parameters, point symmetric attractors of Figs. 5 are observed. Figures 6 are observed attractors in another parameters. These results are observed in different parameters. In Figs. 6 (a), the orbit wanders chaotically among areas which are separated vertical and horizontal axis. Additionally, we found the phenomena that changing values of two negative resistors make it possible to control the chaotic wandering. We investigate this phenomena in the computer calculations.

3.2. Computer Calculated Results

Equations (1) are used for the computer calculations. First, we assume that parameters of two circuits is the same. In this case, attractors similar into Fig. 4, 5 and 6 are observed. However, controlled phenomena of chaotic wandering are not observed. Next, we assume that parameters of two circuits is not the same. Namely, β and δ are changed. β and δ are corresponding to values of capacitors. In this case, same phenomena as experimental results are observed. This result shows that the asymmetry of two circuit parameters is important. Figures 7, 8 and 9 show the computer calculated results. These results are corresponding to Fig. 4, 5 and 6, respectively. These results show that the system model is valid. In order to investigate the phenomena that changing values of two negative resistors make it possible to control the chaotic wandering, this system model and its parameters are used.

Figures 10, 11 show the relationship among α, γ and the orbit existence rate per each quadrant. Parameters α and γ are corresponding to values of two negative resistors in the system. Initial values are set first quadrant and third quadrant as follows:

In Fig. 10 : $x_{a1} = x_{a2} = x_{b1} = x_{b2} = 0.10$.
In Fig. 11 : $x_{a1} = x_{a2} = x_{b1} = x_{b2} = -0.10$.

We also investigated cases that initial values are set second and fourth quadrants. These results are similar to the case of first and third quadrant, respectively. Therefore, we compare Fig. 10 and Fig. 11. For $\alpha < 0.40$ and $\gamma < 0.40$, the orbit existence rate is 0. This means that the orbit staying in one quadrant. Namely, the orbit existence rate is 0 or 100[%], accurately.

Now, we pay attention to each area in figures.

- Area $\alpha = 0.20$-0.40 and $\gamma = 0.40$.
 The rate of first quadrant is 40[%] or more, the rate of third quadrant is 40[%] or less. This result shows that the orbit move between first quadrant and third quadrant and the rate of first quadrant is more than third quadrant.
- Area $\alpha = 0.40$-0.55 and $\gamma = 0.40$.
 The rate of first quadrant is less than third quadrant. Additionally, around these parameter area, the orbit can be also moved to second and fourth quadrant.
- Area $\alpha = 0.10$-0.20 and $\gamma = 0.40$-0.55.
 The rates of second and fourth quadrants are 30[%] or more, the rates of first and third quadrants are 20[%] or less.
- The others.
 Some projecting points in first and third quadrants are observed. As a result of investigating these points, these points shows windows.

As a result, we can say that changing values of two negative resistors make it possible to control the chaotic wandering in some measure.

4. Conclusions

In this study, we have proposed a system which is consist of two chaotic self-oscillatory circuits coupled by diodes. As a result of circuit experiments and computer calculations, we could confirmed that changing values of two negative resistors make it possible to control the chaotic wandering in some measure. In order to observe these phenomena, the asymmetry of two circuit parameters is important.

References

Figure 4: Circuit experimental results 1. Horizontal axis: $v_{a1}[0.5\text{V/div}]$. Vertical axis: $v_{b1}[0.5\text{V/div}]$. $C_{a1} = 98.90[\mu\text{F}]$, $C_{b1} = 103.92[\mu\text{F}]$, $C_{a2} = 69.77[\mu\text{F}]$, $C_{b2} = 69.68[\mu\text{F}]$, $L_a = 51.32[\text{mH}]$, $L_b = 52.27[\text{mH}]$, $g_a = 0.5489[\mu\text{S}]$ and $g_b = 0.6048[\mu\text{S}]$.

Figure 5: Circuit experimental results 2. Horizontal axis: $v_{a1}[0.5\text{V/div}]$. Vertical axis: $v_{b1}[0.5\text{V/div}]$. $C_{a1} = 98.90[\mu\text{F}]$, $C_{b1} = 103.92[\mu\text{F}]$, $C_{a2} = 69.77[\mu\text{F}]$, $C_{b2} = 69.68[\mu\text{F}]$, $L_a = 51.32[\text{mH}]$, $L_b = 52.27[\text{mH}]$, $g_a = 0.5486[\mu\text{S}]$ and $g_b = 0.8070[\mu\text{S}]$.

Figure 6: Circuit experimental results 3. Horizontal axis: $v_{a1}[0.5\text{V/div}]$. Vertical axis: $v_{b1}[0.5\text{V/div}]$. $C_{a1} = 98.90[\mu\text{F}]$, $C_{b1} = 103.92[\mu\text{F}]$, $C_{a2} = 69.77[\mu\text{F}]$, $C_{b2} = 69.68[\mu\text{F}]$, $L_a = 51.32[\text{mH}]$, $L_b = 52.27[\text{mH}]$. (a): $g_a = 0.7407[\mu\text{S}]$ and $g_b = 0.7407[\mu\text{S}]$. (b): $g_a = 0.8953[\mu\text{S}]$ and $g_b = 0.8540[\mu\text{S}]$.

Figure 7: Computer calculated results 1. Horizontal axis: x_a. Vertical axis: x_b. $\alpha = 0.30$, $\beta = 1.47$, $\gamma = 0.20$, $\delta = 1.30$, $\varepsilon = 1.00$ and $\zeta = 10.0$.

Figure 8: Computer calculated results 2. Horizontal axis: x_a. Vertical axis: x_b. $\alpha = 0.20$, $\beta = 1.47$, $\gamma = 0.40$, $\delta = 1.30$, $\varepsilon = 1.00$ and $\zeta = 10.0$.

Figure 9: Computer calculated results 3. Horizontal axis: x_a. Vertical axis: x_b. $\beta = 1.47$, $\delta = 1.30$, $\varepsilon = 1.00$ and $\zeta = 10.0$.

(a) $\alpha = 0.40$, $\gamma = 0.40$ (b) $\alpha = 0.50$, $\gamma = 0.45$
Figure 10: Relationship among two negative resistance values and the orbit existence rate per each quadrant. (initial values: first quadrant). Horizontal axis: x_a, Vertical axis: x_b, $\beta = 1.47$, $\delta = 1.30$, $\epsilon = 1.00$ and $\zeta = 10.0$.

Figure 11: Relationship among two negative resistance values and the orbit existence rate per each quadrant. (initial values: third quadrant). Horizontal axis: x_a, Vertical axis: x_b, $\beta = 1.47$, $\delta = 1.30$, $\epsilon = 1.00$ and $\zeta = 10.0$.