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1. Introduction

Large number of coupled limit-cycle oscillators are use-
ful as models for a wide variety of systems in natural fields,
for example, diverse physiological organs including gastroin-
testinal tracts and axial fiber of nervous systems, convect-
ing fluids, arrays of Josephson junctions and so on. Hence,
it is very important to analyze synchronization and the re-
lated phenomena observed in coupled oscillators in order to
clarify mechanisms of generations or in order to control the
generating-conditions of various phenomena in such natural
systems. In the field of the electrical engineering, a lot of
studies on synchronization phenomena of coupled van der
Pol oscillators have been carried out up to now.

Recently, we discovered continuously existing wave of
changing phase states between two adjacent oscillators from
in-phase to anti-phase or from anti-phase to in-phase in cou-
pled van der Pol oscillators by inductors as a ladder [3]-[5].
This phenomenon is observed in steady state. We call this
phenomenon as “phase-inversion wave”. And, the mecha-
nisms of “propagation,” “disappearance,” “reflection in the
middle of the array” and “reflection at an edge of the array,”
which were the basic characters of the phase-inversion waves
were clarified [3].

In this study, four ladders of van der Pol oscillators are cou-
pled as a cross. Each ladder is composed by van der Pol oscil-
lators which are coupled by inductors. The phase-inversion
waves are observed in this system. We investigate various
phenomena of the phase-inversion waves by changing initial
values and parameters. Especially, we pay our attention to
penetration of the phase-inversion waves at the crosspoint.
Firstly, propagation mechanism of a pair of phase-inversion
waves on a ladder is made clear by using the relationship of
phase difference between adjacent oscillators and instanta-
neous frequency of each oscillator. And, penetration mecha-
nism of two pairs of phase-inversion waves are made clear.

2. Circuit Model

The circuit model used in this study is shown in Fig. 1.
N van der Pol oscillators are coupled by coupling inductors
L2. We carried out computer calculations for the cases of

N = 8. In the computer calculations, we assume the v − i
characteristics of the nonlinear negative resistors in each ci-
rcuit as the following function.

ir(vj,k) = −g1vj,k + g3v
3
j,k (g1, g3 > 0) (1)

The circuit equations governing the circuit in Fig.1 are
written as:
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Figure 1: Circuit Model. (a) Coupled ladders sys-
tem. (b) Coupled oscillators as a ladder. (c) van der
Pol oscillator.

[Center Oscillator]

ẋc = yc (2)
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ẏc = −xc + α1(

M∑
i=1

xi,N − Mxc) + ε(yc − 1

3
y3

c )

[Edge Oscillators] (j=1 ∼ 4)

ẋj,1 = yj,1 (3)

ẏj,1 = −xj,1 + α1(xj,2 − xj,1) + ε(yj,1 − 1

3
y3

j,1)

[Middle Oscillators] (j=1 ∼ 4, k=2 ∼ N-1)

ẋj,k = yj,k (4)

ẏj,k = −xj,k + α1(xj,k+1 − 2xj,k + xj,k−1)

+ ε(yj,k − 1

3
y3

j,k)

[Adjacent Oscillators of Center Oscillator] (j=1 ∼ 4)

ẋj,N = yj,N (5)

ẏj,N = −xj,N + α1(xj,N−1 − xj,N) + α2(xc − xN)

+ ε(yj,N − 1

3
y3

j,N)

where

t =
√

L1Cτ, ij,k =

√
Cg1

3L1g3
xj,k, vj,k =

√
g1

3g3
yj,k,

α1 =
L1

L21
, α2 =

L1

L22
, ε = g1

√
L1

C
,

d

dτ
= “ · ”.

It should be noted that α corresponds to the coupling of
the oscillators and ε corresponds to the nonlinearity of the
oscillators. Throughout the paper, we fix N = 8, α1 = 0.050,
ε = 0.250 and ∆τ = 0.01 and calculate (2)-(5) by using the
fourth-order Runge-Kutta method.

Next, we explain the mechanism of the generation of the
phase-inversion wave by using the change of the instanta-
neous oscillation frequencies according to the synchronization
states and phase difference between adjacent oscillators. It
has been already known that oscillation frequency of in-phase
synchronization of oscillators coupled by inductors is differ-
ent from that of anti-phase synchronization. Namely, fin,
oscillation frequency of in-phase synchronization, is smaller
than fanti, oscillation frequency of anti-phase synchroniza-
tion. Further, the difference betweens fin and fanti increases
as coupling inductance increases [1].

Throughout the paper, we define the phase difference be-
tween two adjacent oscillators and the instantaneous fre-
quency of OSCj,k as follows:

Φj(k,k+1)(n) =
τk(n)− τk+1(n)

τk(n)− τk(n − 1)
× π

fj,k(n) =
1

2(τk(n)− τk(n − 1))
(6)

where τj,k(n) is time when the voltage of OSCj,k crosses 0[V]
at n-th time.

All oscillators are in-phase synchronization and phase-
inversion waves are generated at the edge of ladder1 and
ladder2.

Throughout this paper, center oscillator is shown OSCc

and instantaneous frequency of OSCj,k is shown fj,k and
phase difference between OSCj,k and OSCj,k+1 is shown
Φj(k,k+1).

3. A Pair of Phase-Inversion Waves on a Ladder

Figure 2 shows an example of phase-inversion waves on a
ladder which is composed by eight oscillators. Vertical axes
are sum of two voltages of adjacent oscillators and horizontal
axes are time. White regions in the diagram correspond to
the states that sum of voltages of the two oscillators are close
to zero, namely adjacent two oscillators synchronized at anti-
phase. While, black regions correspond to the states that
sum of voltages of the two oscillators with large amplitude,
namely adjacent two oscillators synchronized at in-phase. In
this figure, we can see a pair of phase-inversion waves reflects
at the both edges of the array and continuously exists.

Figure 2: Example of a pair of phase-inversion waves.

3.1. Mechanism of propagation

Propagation mechanism of a pair of phase-inversion waves
are explained according to the phase differences and the in-
stantaneous frequencies. Figures 3 shows phase differences
and instantaneous frequencies, where Φk,k+1 is phase differ-
ence between OSCk and OSCk+1 and fk is instantaneous
frequency of OSCk.

1. Let us assume that phase-inversion waves are going to
reach OSC4 from OSC1.

2. First phase-inversion wave which changes phase differ-
ence from in-phase synchronization to anti-phase syn-
chronization Φ3,4 changes from 0 to π.

3. As Φ3,4 approaches π, f4 changes from fin to fanti.

4. The change of f4 causes increase of Φ4,5.

5. Second phase-inversion wave which changes phase dif-
ference from anti-phase synchronization to in-phase syn-
chronization reaches OSC3 before Φ3,4 reaches π. There-
fore, Φ3,4 starts to change to 0 again.

6. f4 starts to change to fin again before f4 reaches fanti.

7. f4 reaches fin after Φ3,4 reaches 0 and OSC1∼ OSC4

become stable as in-phase synchronization.

- 472 -



0.158

0.160

0.162

0.164

0.166

0.168

0.170

0.172

0.174

0 50 100 150 200 250 300 350

f3

f4

f5

(3) (4)

(7)

Time [ τ ]

In
st

an
ta

ne
ou

s 
F

re
qu

en
cy

 [ 
1/

τ 
]

fin

fanti

(a) Instantaneous Frequency

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 50 100 150 200 250 300 350

Φ(3,4)
Φ(4,5)

(2)

(5)(4)

Time [ τ ]

P
ha

se
 D

iff
er

en
ce

 [ 
de

gr
ee

 ]

(b) Phase Difference

Figure 3: Mechanisum of propagation at the middle of
array.

4. Two Pairs of Phase-Inversion Waves on a Cross

Figure 4 shows two pair of phase-inversion waves that con-
tinuously exist on the cross. These phase-inversion waves
continuously exist alterneting ladders.

Two pairs of phase-inversion waves are generated at
OSC1,1 and OSC2,1 and propagate to the oscillator of center.
And two pairs of phase-inversion waves do not reflect and
penetrate to other two ladders. The penetration mechanism
of two pairs of phase-inversion waves are explained accord-
ing to the phase differences and the instantaneous frequencies
too.

4.1. Alternating Propagation Mecanisums

Mechanism of penetration at a cross point are explained
according to the phase differences and the instantaneous fre-
quencies. Figures 5 shows phase differences and instanta-
neous frequencies.

Initial values of Φ1(8,c), Φ2(8,c), Φ3(8,c) and Φ4(8,c) are 360◦

instead of 0◦ in Figure 5(c), because the graphs are better to
be understood.

1. Let us assume that first phase-inversion waves on lad-
der1 and ladder2 are going to reach OSC1,8 and OSC2,8.

2. Φ1(8,c) and Φ2(8,c) begin to change simultaneously. And

Figure 4: Alternating propagation of phase-inversion
waves

fc starts to change quickly from fin to fanti (around
τ=188.3).

3. Φ3(8,c) and Φ4(8,c) begin to increase (around τ=220).

4. f1,8 and f2,8 starts to change to fin again by second
phase-inversion waves(around τ=248.6).

5. Φ1(8,c) and Φ2(8,c) are not large values by the influence
which fc increased quickly (360-308=52[degree] when
around τ=242.7).

6. Because, f1,8 and f2,8 slowly decrease and Φ1(6,7) and
Φ2(6,7) are values close to 0◦, f1,7 and f2,7 slowly de-
crease. Threfore, Φ1(7,8) and Φ2(7,8) also change toward
0◦ slowly(around τ=250).

7. Because, Φ1(7,8) and Φ2(7,8) are smaller than −100◦ and
fc is larger than f1,8 and f2,8, Φ1(8,c) and Φ2(8,c) keep
increaseing(around τ=268).

8. f1,8 and f2,8 start to increase again(around τ=268).

9. Φ1(8,c) and Φ2(8,c) become mostly in-phase. Φ3(8,c) and
Φ4(8,c) are large values. Because, Φ3(8,c) and Φ4(8,c)

are attracted into anti-phase once, fc quickly increases
again(around τ=268).

10. Φ1(8,c) and Φ2(8,c) start to change toward anti-phase syn-
chronization(around τ=280).

11. Because phase states between the OSCc and adjacent
OSCc do not stabilize in anti-phase with these param-
eters, f3,8 and f4,8 start to change toward fin again.
Therefore, Φ3(8,c) and Φ4(8,c) keep increasing. Φ3(8,c)

and Φ4(8,c) exceed 540◦ and start to change toward 720◦,
fc begins to decrease quickly toward fin again(around
τ=280).

12. Because, between OSC1,8 and OSCc and between
OSC2,8 and OSCc are attracted to anti-phase synchro-
nization, f1,8 and f2,8 change to fanti once and start to
change toward fin again(around τ=290).

13. Because, Φ1(8,c) and Φ2(8,c) reache to 540◦, decreasing
speed of fc slow. fc starts to decrease toward fin again
because Φ1(8,c) and Φ2(8,c) keep changing toward 720◦.
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14. Phase states between OSCc and OSC1,8 and between
OSCc and OSC2,8 become in-phase synchronization and
stable because Φ1(8,c) and Φ2(8,c) reach to 720◦ and f1,8

and f2,8 reach to fin(around τ=330).

15. Φ3(8,c) and Φ4(8,c) are almost 600◦. The phase differ-
ences are far from 740◦. Therefore, decreasing speed of
fc slows once. And, f3,8 and f4,8 begin to change toward
fanti again (around τ=300)

16. f3,8 and f4,8 begin to increase. But, fc is larger than
f3,8 and f4,8 till around 335τ . Therefore, Φ3(8,c) and
Φ4(8,c) keep to increase till 720◦ (around τ=310).

17. Phase states between OSCc and OSC3,8 and OSCc and
OSC4,8 become to in-phase syncronizarion. Phase states
between OSCc and OSC1,8 and OSCc and OSC2,8 also
become to in-phase synchronization. fc changes to fin

quickly.

18. f3,8 and f4,8 are also attracted to fin.

As observed above, the phase-inversion wave is pene-
trated from ladder1,2 to ladder3,4.

5. Conclusions

In this study, four ladders of van der Pol oscillators were
coupled by an oscillator and four inductors as a cross. When
two pairs of phase-inversion waves were generated at each
edges of two ladders, the phase-inversion waves which alter-
nated in two pairs of ladders were observed. By using the re-
lationship between phase states and instantaneous oscillation
frequencies, we explained the mechanisms of the propagation
and the alternating propagation of wave.
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Figure 5: Machanisum of alternating propagation of
phase-inversion waves.
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