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abstract: Numerical analysis of nonlinear algebraic
equations is one of the most fundamental and important
problems in scientific and engineering fields. In this pa-
per, we propose an efficient SPICE-oriented algorithm
for calculating the multiple solutions and bifurcation
points. Firstly, a given nonlinear equation is replaced by
the equivalent resistive circuit model using ABMs (ana-
log behavior models) of SPICE. Therefore, the DC so-
lutions correspond to those of the nonlinear equations.
We apply the Newton homotopy method to solve the
equations, where the homotopy paths are traced by an
efficient algorithm based on the arc-length method. To
find all the solutions, it is important to find the limit
points and pitchfork bifurcation points, because the so-
lution curve in the real space will be disappear at the
limit points, and happens to appear the complex con-
jugate solutions from the point. Therefore, we propose
an algorithm for calculating the solution curves in the
complex space starts from the limit point. In such way,
we can find out all the solutions in most of the cases.

1. Introduction
It is very important to calculate the multiple solutions

of nonlinear equations, because there are many kind of
resistive circuits such as flip-flops and Schmitt-trigger
which have the multiple DC solutions. Unfortunately, a
well-known Newton-Raphson method cannot any more
be applied to find the multiple solutions. Therefore,
there have been published many papers [1]-[5] for find-
ing the multiple and/or all the solutions of the following
nonlinear equation:

f1(v1, v2, · · · , vn) = 0
f2(v1, v2, · · · , vn) = 0

fn(v1, v2, · · · , vn) = 0


 (1)

Some of them [1]-[2] can efficiently find all the solutions
of piecewise-linear resistive circuits, where the nonlinear
elements are modeled by the piecewise-linear segments.
Although the interval methods [3]-[4] can also find all the
solutions, it is rather time-consuming for large scale sys-
tems. The homotopy methods [5] are usefully applied to
calculate the multiple solutions of nonlinear equations.

There have been proposed many efficient algorithms us-
ing SPICE simulators [6]-[8] whose algorithms are based
on the homotopy methods. Although they can efficiently
find the multiple solutions, it is not known whether they
have gotten all the solutions or not. The homotopy paths
may consist of the multiple independent branches and
the closed loops, whose branches may cross at the points
called pitchfork bifurcation points. Unfortunately, the
curve tracing algorithm based on arc-length method [10]
may fail to trace the curve, because the rank of the Ja-
cobian matrix of eq.(1) is reduced to equal or less than
n−1 at the points. On the other hand, since the rank is
equal to n at the limit point, we can successfully continue
to trace the homotopy path. The bifurcation points be-
long to the singular points, so that the curve may turn
or cross the other curves there. Therefore, it is impor-
tant to calculate the bifurcation points to get multiple
solutions or to know the properties of nonlinear equation
(1).
In this paper, we show the curve tracing algorithm us-

ing SPICE in section 2, and SPICE-oriented algorithms
to find the limit and pitchfork bifurcation points in sec-
tion 3. We also show that the limit point in the real
space also corresponds to the limit point of the complex
space. We found an interesting property such that, by
tracing the solution curve in the complex space, we can
find another isolated closed loop in the real space. In
this way, we can calculate the multiple solutions or all
the solution of nonlinear algebraic equations. The in-
teresting illustrative examples are shown section 3 and
4.

2. Curve tracing algorithm
Nowadays, SPICE is widely used circuit simulations

of integrated circuits. Since nonlinear devices in ICs
are modeled by many kinds of the functions, SPICE has
all kinds of the controlled sources, and nonlinear func-
tions such as exponential functions, multiplications, ad-
ditions and subtractions and so on. Furthermore, we
can easily get any function using ABMs(analog behav-
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ior models) in such manner that the desired functions
are programmed with Fortran language. An example of
single-output function having the multi-inputs is shown
in Fig.1, where the function f(v1, v2, . . . , vn) in the black
box is realized by writing the function with the input
variables {v1, v2, . . . , vn}. On the other hand, a set of
the nonlinear equations given by (1) is realized by the
equivalent circuit as shown in Fig.2.
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Figure 1: Analog Behavior Model
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Figure 2: Equivalence circuit of the nonlinear algebraic equation

Namely, if we first assume the voltage at ith resistor
(1Ω) voltage vi, we can realize the current source.

Ii = fi(v1, v2, . . . , vn)− vi, i = 1, 2, . . . , n (2)

Thus, we have fi(v1, v2, . . . , vn) = 0 with the Kirchhoff’s
voltage law. Let us apply the Newton homotopy method
to solve the equation (1). Then, we formulate the fol-
lowing modified relation:

F(v, ρ) = f(v) + (ρ − 1)I0 = 0 (3)

where f(v) : Rn �→ Rn given by the relation (1), and
I0 = f(v0) is the initial guess. Thus, the relation (2) is
consisted “n” equations having “n+1” variables, so that
the solution satisfying the relation (3) is given by the
solution curves in “(n+ 1)” dimensional space. In order
to trace the solution curve with the arc-length method,
we apply the following relation [9]:

K∑
i=1

(
dvi

ds

)2

= 1 (4)

Observe that the solutions satisfying (1) are obtained
at ρ = 1 on the solution curve of eq.(3). Now, we show
the equivalent circuit satisfying the Newton homotopy
method (3) and (4). The block diagram is shown by
Fig.3(a). Some of the “K” node voltages in the equation
(1) are chosen as the variables of the arc-length method
(4) [8]. Thus, the circuit realizing the arc-length method
is shown by Fig.3(b). that is called STC(solution curve
tracing circuit)[6]. In many practical problems [8], we
can get all the DC solutions from a suitable initial guess
I0 in equation (3).
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Figure 3: (a)Equivalence circuit of Newton homotopy method.

(b)Solution curve tracing circuit.

3. Calculations of bifurcation points
Now, consider an algorithm for calculating the bifur-

cation points of the nonlinear equations. In this section,
we show an efficient SPICE-oriented algorithm. For sim-
plicity, we set vn+1 = ρ and rewrite the relation (3) as
follows:

F(v) = 0 F : Rn+1 �→ Rn (5)

It is proved that our algorithm [9] can trace the solution
curves only if the rank of the Jacobian matrix of (5) is
n on the whole curve. Since the rank at the limit points
is equal to “n”, and less than or equal to n − 1 at the
pitchfork bifurcation points. Therefore, the limit points
can be traced by our arc-length method. However, it
is usually not so easy to calculate the Jacobian matrix
and the rank. Thus, let us to obtain an algorithm to
calculate the bifurcation points without estimating the
Jacobian matrix.
For the pitchfork point of (1), we consider a set of the

following modified equations1 :

F1(v, h) = F(v) + hI = 0
F2(v,∆v) = F(v +∆v) − F(v) = 0

}
(6)

which have 2n+2 variables and 2n equations if we assume
∆v as the additional variables. Since the rank of the
Jacobian matrix of F(v) is equal or less than n− 1 [10],
if we set the variables ∆v1 and ∆v2 small fixed constants
in F2(v,∆v)), then, eq.(6) is the nonlinear equation with
“2n” variables and “2n” equations. Hence, we also apply
the Newton homotopy method as follows:

F1(v, h) + (λ − 1)I10 = 0
F2(v,∆v) + (λ − 1)I20 = 0
K∑

i=1

(
dvi

ds

)2

+

K∑
i=3

(
d∆vi

ds

)2

+

(
dh

ds

)2

+

(
dλ

ds

)2

= 1


 (7)

Tracing the homotopy path (7), we can find the bifur-
cation points at λ = 1 and h = 0. Note that two of the
variables ∆v1 and ∆v2 and the initial guess I20 must be
chosen the fixed sufficient small values.

1 At the pitchfork points, the second order term of the Taylor
expansions are assumed negligible values for the small variations
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Example 3.1. Now, let us calculate bifurcation points
of the following equation:

f(v1, v2) = (v3
1 − 4v1 − v2)(−1

4
v3
1 − v2 + 1) = 0 (8)

Thus, we have the following modified relations:

f1(v1, v2, h) = f(v1, v2) + h = 0
f2(v1, v2) = f(v1 +∆v1, v2)− f(v1, v2) = 0
f3(v1, v2) = f(v1, v2 +∆v2)− f(v1, v2) = 0


 (9)

Note that (8) consists of two variables and one equation,
and that it satisfies both ∂f(v1, v2)

∂v1
= 0 and ∂f(v1, v2)

∂v2
= 0

at the pitchfork points. Hence, the fixed small variables
∆v1 and ∆v2 can be set as shown in (9). Applying the
Newton homotopy method, we have

f1(v1, v2, h) + (λ − 1)I01 = 0
f2(v1, v2) + (λ − 1)I02 = 0
f3(v1, v2) + (λ − 1)I03 = 0(

dv1

ds

)2

+
(

dv2

ds

)2

+
(

dh

ds

)2

+
(

dλ

ds

)2

= 1




(10)

where we chose ∆v1 = ∆v2 = 10−5. Then, we have
3 pitchfork bifurcation points (2.0, 0.0), (−2.0, 0.0) and
(−0.25, 0.98) at h = 0, λ = 1 as shown in Fig.4.
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Figure 4: Solution of the pitch fork point

The algorithm is much more simple compared to the
method [11] using the Jacobian matrix of (5), especially
for the large scale systems.
Now, consider to calculate the branches starting from

the pitchfork bifurcation points in (5). We set a small
sphere centered at the bifurcation points v̂, and get the
intersections between the branches of (5) and the sphere.
Thus, we have

F(v) = 0 ,

K∑
i=1

(vi − v̂i)
2 = γ

}
(11)

for a sufficient small positive value γ. The relations (11)
are also solved by the Newton homotopy method. The
results for the above example are shown by Fig.5(a),(b)
and (c), respectively. Starting from these intersections,
we can trace the solution curves of (5) with arc-length
method [9].
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Figure 5:

4. Solution curves of algebraic equations in com-
plex space
We consider the solution curves of the following equa-

tion:

f(v1, v2) =

N∑
i=0

M∑
j=0

aijvi
1vj

2 = 0 (12)

Assume that the solution curves may consist of several
disjoint loops and/or independent branches. The inde-
pendent branches with a pitchfork point can be found by
the above method in section 3. In this section, we will
develop an algorithm to find the disjoint loops. Equation
(12) satisfies the following relations:

∂v2

∂v1
= 0 or equivalently

∂f(v1, v2)

∂v1
= 0 (13)

at the limit points. Therefore, the points can be also
found by solving

f1(v1, v2, h) = f(v1, v2) + h = 0
f2(v1, v2) = f(v1 +∆v1, v2)− f(v1, v2) = 0

}
(14)

by choosing a sufficiently small fixed constant ∆v1.
Thus, the limit point (v̂1, v̂2) can be obtained by solving
(14). Note that when the value v2 is increased or de-
creased from the limit point v̂2, the solutions v1 of (12)
will be given by the complex conjugate values or the real
values. We consider here the solution curves in the com-
plex space. In this case, we set the variables (a+ jb, v2)
instead of (v1, v2) in (12). The directions of the branches
are found by the intersections of a small sphere with the
branches of (12) as follows:

�{f ((a + jb), v2)} = 0
�{f ((a + jb), v2)} = 0
(v̂1 − a)2 + b2 + (v2 − v̂2)2 = r2


 (15)

for a small ”r”. Thus, the solution curves in the complex
space can be found by solving the first two equations in
(15). Remark that a new solution curve satisfying (12)
in real space will be also appeared at another limit point
in the complex space. Thus, the other disjoint loop of
(15) in real space can be found in the same way.
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Example 4.1 Now, consider a simple example as fol-
lows:

F (v1, v2) = v4
1 − v3

1 − 2v2
1 − 2v1 − v2 + 4 = 0 (16)

For finding the limit point, we calculate the Jacobian

∂F (v1, v2)
∂v1

= 4v3
1 − 3v2

1 − 4v1 − 2 = 0 (17)

The real solution of (17) corresponding to the limit point
of (16)is given by (v̂1 = 1.58, v̂2 = −1.81). Now, set
v1 = a + jb in (16) for getting the solution curve in
complex space. Then, we have

�{F (a + jb, v2)} = a4 − a3 − 2a2 − 2a + 4
− (6a2 − 3a − 2)b2 + b4 − v2 = 0

�{F (a + jb, v2)} = 4a3 − 3a2 − 4a − 2− (4a − 1)b2 = 0

}
(18)

We assume a small sphere centered at the limit point as
follows:

(a − v̂1)2 + b2 + (v2 − v̂2)2 = r2 (19)

Substituting (v̂1 = 1.58, v̂2 = −1.81) and r = 0.1 into
(19) and solving (18) together with (19), we have the
intersection points (a = 1.58, b = ±0.0245, v2 = −1.87).
Starting from the intersections on the sphere, we can
get the solution curve in the complex space as shown in
Fig.6.
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Figure 6: Solution curves in the complex space

5. Conclusions and remarks
It is very important to find all the solutions of non-

linear equations. In this paper, we have shown Newton
homotopy method for finding the multiple solutions of
nonlinear equations. The solutions are located on the
solution curves satisfying the modified equation. The
branches may consist of the disjoint and/or closed loops.
We proposed an efficient SPICE-oriented algorithm for
calculating the bifurcation points such as limit and/or
pitchfork points. After then, the intersections of a small
sphere centered at the bifurcation points with solution

curves are calculated. Thus, the solution curves start-
ing from the these points are obtained by the arc-length
method [9]. The homotopy paths of the nonlinear equa-
tion sometimes consist of the disjoint closed loops. To
find the multiple loops, we need to trace the solution
curves in complex space starting from the limit points.
We also showed an interesting result that the limit point
in real space is also the limit point on the solution curves
in the complex space. Although it is impossible to prove
that all the solutions of the nonlinear algebraic equa-
tions are found with our method, the all solutions can
be found in many practical problems.
In the future problems, we need to extend the algo-

rithm to large dimensional cases, and also extend to
the nonlinear equation instead of the nonlinear algebraic
equations.
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