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1. Introduction

The analysis and design of high speed LSI chips are be-
coming more and more important, because the sub-circuits
coupled with interconnects embedded in the substrate some-
times cause the fault switching operations due to the signal
delays, crosstalks, reflections and so on [1]-[5]. The Elmore
resistance-capacitance (RC) delay metric is popular due to
its simple closed-form expression, computation speed and fi-
delity with respect to the simulation [4]. The closed-form
combining with the delay and crosstalk is firstly presented in
the reference [5]. The modified algorithms are proposed later
for the improvement of the accuracy and the practical appli-
cations in the simulations [6]-[9].

Nowadays, AWE (asymptotic waveform evaluation
method) [10] is widely used as a reduction technique of the
large scale networks coupled with interconnects, the algo-
rithm is based on a moment-matching technique and Padé
approximation. However, the method sometimes become
erroneous, if there exist the poles far from the origin. To
overcome the problem, CFH (complex frequency hopping)
[11] and multi-point Pad́e approximation [12] methods are
proposed. In these reduction algorithms, the reduced circuits
sometimes become unstable in the time domain even if all
the poles are located in the left hand side of the complex
plane. The ill-condition can be overcome by PVL (Padé via
Lanczos process) [13], and PRIMA (passive reduced-order
interconnect macromodeling algorithm) [2,14]. In order to
apply these algorithms to the interconnects, we need two
steps such that each interconnect is firstly modeled by a finite
order system, and Arnoldi-based congruence transformation
is applied to the system to form its reduced order model.

In this paper, we consider LSIs such as ASIC or SoC (Sys-
tem on a Chip) are coupled with interconnects embedded in
the substrate. In this case, the diffusion resistance compo-
nents of the interconnects are generally assumed to be very
large compared to those of PCBs [3] and the lengths are very
short. From the telegraph equation to interconnect, The ad-
mittance matrices can be derived from the relations at the
near and far ends [1]. We propose here a new computa-
tional algorithm for calculating theexact polesin the complex

plane. Next, each of the elements of the admittance matri-
ces is approximated by partial fraction using a few dominant
poles around the origin, where the corresponding residues are
evaluated by either a theoretical method or the least squares
method. The latter method will be useful for relatively large
scale multi-conductor interconnects. Thus, the admittance
matrices are reduced as the partial fractions by which it is
possible to derive asymptotic equivalent circuits. We show
the numerical methods for calculating the poles and residues
in section 2. Illustrative examples are given in section 3.

2. Calculation of exact poles and residues

Now, consider a uniformN coupled RLCG interconnect
described by the following telegraph equations;

dV(x, s)
dx

= −(R + sL)I(x, s)
dI(x, s)

dx
= −(G + sC)V(x, s)





(1)

The input and output relations at the near and far ends are
described by the admittance matrices as follows [1]:

[
I(0, s)

−I(d, s)

]
=

[
Y11(s) Y12(s)
Y21(s) Y22(s)

] [
V(0, s)
V(d, s)

]
(2)

where, using the eigenvaluesΓ(s) = diag[γi(s)], we have
the following relations;

Y11(s) = Y22(s) = Pc(s)diag[coth γi(s)d]Pv(s)−1

Y12(s) = Y21(s) = Pc(s)diag[sinh γi(s)d]−1Pv(s)−1

}

(3)
where

diag[γi(s)2] = Pv(s)−1(R + sL)(G + sC)Pv(s)
diag[γi(s)2] = Pc(s)−1(G + sC)(R + sL)Pc(s)

}

Thus, we have

Pc(s) = (R + sL)−1Pv(s)Γ(s) (4.1)

PT
c (s) = Pv(s)−1 (4.2)
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Observe that all the poles of admittance matrices can be found
at the locations satisfyingsinh γi(s) = 0, i = 1, 2, . . . , N .
Thus, we have the following theorem for calculations of the
exact poles.

Theorem 1: The locations of poles satisfying relations(3)
are found by solving the following equation:

∣∣∣∣(R + sL)(G + sC) +
(nπ

d

)2

I
∣∣∣∣ = 0, n = 1, 2, . . . (5)

whered is the length of interconnect.

Proof: In the case ofn 6= 0, we have from (3) that the poles
satisfy the following relation:

|Pv(s)diag[sinh γi(s)d]Pc(s)−1| = 0 (6.1)

and
|Pv(s)diag[tanh γi(s)d]Pc(s)−1| = 0 (6.2)

Since the transfer matricesPv(s) andPc(s) are nonsingular
for the nonzero eigenvalues, the poles satisfying the above
two relations are given by

γi(s)d = jnπ, i = 1, 2, . . . , N, n = 1, 2, . . . (7)

Therefore, the characteristic equation from the telegraph
equation (1) has to satisfy the relation (5).

Q.E.D.

Corollary 1.1: The poles atn = 0 satisfy the following
relation;

|R + sL| = 0 (8)

Proof: We haveγi = 0 at n = 0. Thus, using the relations
of (4), we have the following relation;

lim
γi→0

Pc(s)diag[sinh γi(s)d]−1Pv(s)−1

= (R + sL)−1Pv(s)diag[γi(s)]
1

diag[γi(s)d]
Pv(s)−1

=
1
d
(R + sL)−1

(9)
Q.E.D.

In generally, it is not easy to calculate the poles using the
relation (5). Hence, we apply Leverrier-Faddeeva algorithm
[16] for getting the characteristic equation of|sI−A| = 0 to
the relation (5). We set in (5)

A(s) = −(RC + LG)−1

[
RG +

(nπ

d

)2

I + s2LC
]

(10)
Then, we have

|sI−A(s)| = α0(s) + sα1(s) + · · ·+ sN−1αN−1(s) + sN

(11)

whereαk(s) is given by the following relations:

BN−1 = I,
⇒ αN−1(s) = −tr(A(s))

BN−2(s) = A(s)BN−1 + αN−1(s)I,

⇒ αN−2(s) = −1
2
tr(BN−2(s)A(s))

............................................
B0(s) = A(s)B1(s) + α1(s)I,

⇒ α0(s) = − 1
N

tr(B0(s)A(s))





(12)

Note that the maximum degree of (11) eventually becomes
2N , becauseαk(s) is polynomial with s. This algebraic
equation can be numerically solved by the use of Bairstow
method and so on. In this way, we can calculate the exact
poles of the admittance matrices (3).

Then the corresponding residues are calculated by either
the least squares method or a theoretical method. The detail
of the theoretical method can be found in [17].

We choose the dominant poles located around the origin of
complex plane, because such poles will have a great effect on
the transient response. On the contrary, the poles stay away
from the origin will give only small effect. Thus, the admit-
tance matrices given by (3) are approximated by the partial
fractions, which consist of the dominant poles and the corre-
sponding residues, in the following form:

Y11,ij(s) = Y22,ij(s) =
k1,ij

s + p0
+

M∑

k=1

skC1,k,1,ij + kC0,k,1,ij

s2 + aC,ks + bC,k

(13.1)

Y12,ij(s) = Y21,ij(s) =
k2,ij

s + p0
+

M∑

k=1

skC1,k,2,ij + kC0,k,2,ij

s2 + aC,ks + bC,k

(13.2)

whereM shows the number of complex conjugate pairs. As
shown in [17], the absolute values ofk2,ij , kC1,k,2,ij and
kC0,k,2,ij are equal tok1,ij , kC1,k,1,ij andkC0,k,1,ij , respec-
tively, but they alternately contain negative sign. Therefore,
the relation (2) can be written as follows;

[
I(0, s)

−I(d, s)

]
=

[
Ya(s) + Yb(s) Ya(s)−Yb(s)
Ya(s)−Yb(s) Ya(s) + Yb(s)

] [
V(0, s)
V(d, s)

]

(14)
We can derive asymptotic equivalent circuit models that sat-
isfy the relations (13) and (14), but omit in this paper due to
space limitation (refer to [17] for detail).

3. Illustrative example

At first, we investigate the distribution of poles in the com-
plex plane. The parameters of interconnects are set as fol-
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Fig. 1 Distribution of poles for 4-conductor interconnects. Poles with negative imaginary part are not included.
(a)r = 0.5[Ω/mm], d = 5.0[mm], (b) r = 0.5[Ω/mm], d = 1.0[mm], (c) r = 5.0[Ω/mm], d = 5.0[mm].
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Fig. 2 Frequency response curves for single conductor interconnect.M = 10

lows:

Ri,i = r[Ω/mm], other elements ofR are 0.
Li,i = 10[nH/mm], Li,i+1 = Li−1,i = 1[nH/mm],
Li,i+2 = Li−2,i = 0.1[nH/mm], other elements ofL are 0.
Ci,i = 4[pF/mm], Ci,i+1 = Ci−1,i = −0.21[pF/mm],
Ci,i+2 = Ci−2,i = −0.01[pF/mm], other elements ofC are 0.
Gi,i = 0.5[mS/mm], Gi,i+1 = Gi−1,i = −0.05[mS/mm],
Gi,i+2 = Gi−2,i = −0.01[mS/mm], other elements ofG are 0.

Fig. 1 shows the distribution of poles for 4-conductor in-
terconnects. Observe that they consist ofN real poles and the
complex conjugate poles for eachn in (5). As shown in Fig.
1 the imaginary parts of the complex conjugate poles increase
monotonically asn in (5). We found that the imaginary parts
of the poles for short length interconnect become quickly
large forn, Also the real parts of the poles become large, as
the resistance componentr of interconnect increases. There-
fore, we will need to take into account only a few dominant
poles for either short-length interconnects or high-resistance
one, such as ASIC, SoC and so on.

It is also found that the poles forN = 1 always locate
around the center position of pole distributions for another
N . This means that the reduction technique for RCG inter-
connects [18] may be applicable to RLCG interconnects.

Using these exact poles, we calculated the residues by the
least squares method. The frequency response curves approx-
imated by substituting the obtained residues and poles to the
partial fraction (13) and the exact curves obtained from (3) for
single conductor interconnect are shown in Fig. 2. As found
form this figure, the frequency response curves of the ad-
mittance matrices have many peaks correspond to the poles.

Both curves have relatively good agreement up to 11-th peak
around 5 [GHz], because we took a real pole and 10 pairs of
complex conjugate poles. For multi-conductor interconnects,
we confirmed that the approximated curves are relatively con-
sistent with the exact one, although due to the effects of cou-
pling the shapes of the curves become more complicated than
those of single conductor interconnect.

RL

RS

+
− v(d,t)v(0,t)

1 ns

1 .2 ns

5 V

Fig. 3 Simple linear circuit with single conductor interconnect.
r = 0.5[Ω/mm], d = 5.0[mm], RS = 10[Ω], RL = 10[Ω]

Next, by using the numerical inverse Laplace transforma-
tion [19], a simple linear circuit with a single conductor inter-
connect shown in Fig. 3 is simulated for both the exact admit-
tance matrices (3) and the approximated partial fractions (13).
The parameters of the method area = 0.2, K = 512. Note
that the numerical inverse Laplace transformation method can
be applied toonly linear circuits, but we use this method in
order to investigate the effects of the reduction approximat-
ing the admittance matrices (3) with the partial fractions (13).
Fig. 4 shows the transient response waveforms. We found
that the more the number of poles increases, the more both
waveforms are well in agreement.

4. Conclusions and remarks
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Fig. 4 Transient response for simple linear circuit of Fig. 3.

In this paper, we have proposed an algorithm for calculat-
ing the exact poles, the corresponding residues are estimated
by the least squares method. Using the poles and residues,
each element of the admittance matrices of interconnects is
approximated by partial fraction.

In our simulations, it has been shown that the exact fre-
quency response curves and the curves approximated by par-
tial fractions have relatively good agreement. Further from
transient simulation making use of the numerical inverse of
Lapalace transforms, the response waveforms obtained by our
method become more accurate, as the numberM of the com-
plex conjugate pairs increases.

In future, we intend to find analytically the residues and
compare the results obtained in this paper.
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