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1. Introduction plane. Next, each of the elements of the admittance matri-

ces is approximated by partial fraction using a few dominant
The analysis and design of high speed LSI chips are Bgyjes around the origin, where the corresponding residues are
coming more and more important, because the sub-circei{&luated by either a theoretical method or the least squares
coupled with interconnects embedded in the substrate sofgthod. The latter method will be useful for relatively large
times cause the fault switching operations due to the siggahle multi-conductor interconnects. Thus, the admittance
delays, crosstalks, reflections and so on [1]-[5]. The EImaigatrices are reduced as the partial fractions by which it is
resistance-capacitance (RC) delay metric is popular duepiissible to derive asymptotic equivalent circuits. We show
its simple closed-form expression, computation speed andfiie nhumerical methods for calculating the poles and residues

delity with respect to the simulation [4]. The closed-fornh section 2. lllustrative examples are given in section 3.
combining with the delay and crosstalk is firstly presented in
the reference [5]. The modified algorithms are proposed later

for the improvement of the accuracy and the practical appli- Calculation of exact poles and residues

cations in the simulations [6]-[9]. Now, consider a uniformiV coupled RLCG interconnect

Nowadays, AWE (asymptotic waveform evaluatioBescribed by the following telegraph equations;
method) [10] is widely used as a reduction technique of the

large scale networks coupled with interconnects, the algo- dV(z, s)

rithm is based on a moment-matching technique anckPad dr —(R + sL)I(z, 5) (1)
approximation. However, the method sometimes become di(z,s) _ (G + 5C)V(z, )

erroneous, if there exist the poles far from the origin. To dx ’

overcome the_ prc_)blem,, CFH (C(_)mpl_ex frequency hoppingp..e input and output relations at the near and far ends are
[11] and multi-point Pad approximation [12] methods Ar%escribed by the admittance matrices as follows [1]:
proposed. In these reduction algorithms, the reduced circuits

sometimes become unstable in the time domain even if alll (q, ) Yii(s) Yia(s)

the poles are located in the left hand side of the complex{ ~1(d, s) } = { You(s) Yaols) ] [ V(d, s) } (2)
plane. The ill-condition can be overcome by PVL (Bada

Lanczos process) [13], and PRIMA (passive reduced-ordefiere, using the eigenvalu®gs) = diag[y;(s)], we have
interconnect macromodeling algorithm) [2,14]. In order tde following relations;

apply these algorithms to the interconnects, we need two

steps such that each interconnect is firstly modeled by a finif¥11(s) = Ya2(s) = Pc(s)diag[coth~;(s)d]P,(s) ™! }
order system, and Arnoldi-based congruence transformatio¥12(s) = Ya1(s) = Pc(s)diag[sinh~;(s)d] ' P, (s) ™"

is applied to the system to form its reduced order model. (3)

In this paper, we consider LSIs such as ASIC or SoC (Sywhere
:zhem on a Chip) are c;oupled with |qtergonnect§ embedded in diag[vi(5)2] = Pu(s)~} (R + sL)(G + sC)P, (s)

e substrate. In this case, the diffusion resistance compo-diagh'(s)Q] — Pu(s)" (G + sC)(R + sL)P.(s) }
nents of the interconnects are generally assumed to be very ! ¢ ¢
large compared to those of PCBs [3] and the lengths are Ve€R(s, we have
short. From the telegraph equation to interconnect, The ad-

mittance matrices can be derived from the relations at the P.(s) = (R + sL)"'P,(s)[(s) (4.1)
near and far ends [1]. We propose here a new computa-
tional algorithm for calculating thexact polesn the complex Pl(s) =P,(s)! (4.2)
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Observe that all the poles of admittance matrices can be fowiterea (s) is given by the following relations:
at the locations satisfyinginh~;(s) = 0, ¢« = 1,2,..., N.

Thus, we have the following theorem for calculations of the By-1=1,

exact poles.

Theorem 1: The locations of poles satisfying relatio(®

are found by solving the following equation:

(R + sL)(G + sC) + (%)21

whered is the length of interconnect.

= an-1(s) = —tr(A(s))
By_2(s) = A(s)Bz\i,l +an-1(s)I,
= OZN,Q(S) = —atr(BN,Q(S)A(S)) (12>

Bo(s) = A(s)Bl(ls) + ai(s)I,
= w(s) = —Ntr(Bo(s)A(s))

Note that the maximum degree of (11) eventually becomes

Proof: In the case of # 0, we have from (3) that the polesz v, becausen(s) is polynomial withs. This algebraic

satisfy the following relation:

[P, (s)diag[sinh7;(s)dPe(s) " =0 (6.1)
and

P, (s)diag[tanh v;(s)d|P.(s)"'[=0  (6.2)

Since the transfer matricd3,(s) andP.(s) are nonsingular

equation can be numerically solved by the use of Bairstow
method and so on. In this way, we can calculate the exact
poles of the admittance matrices (3).

Then the corresponding residues are calculated by either
the least squares method or a theoretical method. The detail
of the theoretical method can be found IV].

We choose the dominant poles located around the origin of

for the nonzero eigenvalues, the poles satisfying the ab&@EnPlex plane, because such poles will have a great effect on

two relations are given by

~vi(s)d=gjnm, i=1,2,...,N, n=1,2,... (7)

the transient response. On the contrary, the poles stay away
from the origin will give only small effect. Thus, the admit-
tance matrices given by (3) are approximated by the partial
fractions, which consist of the dominant poles and the corre-

Therefore, the characteristic equation from the telegragiponding residues, in the following form:

equation (1) has to satisfy the relation (5).

Q.E.D.
Corollary 1.1: The poles at. = 0 satisfy the following
relation;
IR+ sL|=0 (8)
Proof: We havey; = 0 atn = 0. Thus, using the relations

of (4), we have the following relation;

limOPc (s)diag[sinh v;(s)d] 1P, (s) "
vi—

~ R+ sL>-1Pv<s>diagm<s>]mmrl
= é(R +sL)~!

Q.E.D.

M
i Z skc1 k1,5 + kcok,ij (13.1)
s+po =t s*+acks+bonk
Yi2,i5(s) = Ya1,55(s) =
= (13.2)

ko i L Z skci k2,5 + koo k,2,ij

= s tacks+bok

whereM shows the number of complex conjugate pairs. As
shown in [L7], the absolute values o, ;;, kc1,k,2,,; and
kCO,k,Q,ij are equal tdL‘Lij, kCl,k,l,ij andkco,k,l,ij, respec-
tively, but they alternately contain negative sign. Therefore,
the relation (2) can be written as follows;

{ 1(0, s) ] -
In generally, it is not easy to calculate the poles using thel — )

relation (5). Hence, we apply Leverrier-Faddeeva algorithm

[16] for getting the characteristic equation|sf — A| = 0 to
the relation (5). We set in (5)

2
A(s) = —(RC+LG)™! [RG + (%”) I+ SQLC}
(10)
Then, we have
|sT— A(s)| = ao(s) + sar(s) + -+ ay_1(s) + s~

(11)

Y.(s) —Yu(s) V(0, s) }
Ya(s) + Yo(s)
(14)
We can derive asymptotic equivalent circuit models that sat-
isfy the relations (13) and (14), but omit in this paper due to

space limitation (refer tol[7] for detail).

3. lllustrative example

At first, we investigate the distribution of poles in the com-
plex plane. The parameters of interconnects are set as fol-
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Fig. 1 Distribution of poles for 4-conductor interconnects. Poles with negative imaginary part are not included.
(@)r =0.5[Q/mm], d =5.0[mm|, (b)r = 0.5[Q/mm|, d = 1.0[mm], (c)r = 5.0[Q/mm|, d = 5.0[mm].
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Fig. 2 Frequency response curves for single conductor interconheet. 10
lows: Both curves have relatively good agreement up to 11-th peak
Ri.; = r[Q/mmi, other elements aR are 0. around 5 [GHz], because we took a real pole and 10 pairs of
Li; = 10[nH/mm, L; ;41 = Li_1,; = 1[nH/mni, complex conjugate poles. For multi-conductor interconnects,
Liiyo = Li_o2; = 0.1[nH/mn, other elements ok, are 0. we confirmed that the approximated curves are relatively con-
Ci,; = 4[pFImm, C; ;11 = Ci—1,; = —0.21[pF/mn], sistent with the exact one, although due to the effects of cou-
Ciit2 = Ci_a,; = —0.01[pF/mm, other elements of are 0. pling the shapes of the curves become more complicated than
Gii = 0.5[mS/mn}, Gy i1 = Gi—1,0 = —0.05[mS/mnj, those of single conductor interconnect.
Gi,it2 = Gi—2,; = —0.01[mS/mni, other elements ofx are 0.
,1ns,
Fig. 1 shows the distribution of poles for 4-conductor in- iy "
terconnects. Observe that they consishofeal poles and the ‘ ISV
complex conjugate poles for eaghin (5). As shown in Fig. “rzns v(01) () R

1 the imaginary parts of the complex conjugate poles increase

monotonically as: in (5). We found that the imaginary parts _ o= =

of the poles for short Iength interconnect become quickly Fig. 3 Simple linear circuit with single conductor interconnect.
large forn, Also the real parts of the poles become large, as r = 0.5{0mm), d =5.00mmj, Bs = 10[), £y = 10[]

the resistance componentf interconnect increases. There- Next, by using the numerical inverse Laplace transforma-

fore, we will need to take into account only a few dominagh, [19], a simple linear circuit with a single conductor inter-
poles for either short-length interconnects or high-resistanggnect shown in Fig. 3 is simulated for both the exact admit-
one, such as ASIC, SoC and so on. tance matrices (3) and the approximated partial fractions (13).
It is also found that the poles faF = 1 always locate 1 parameters of the method are- 0.2, K — 512. Note
around the center position of pole distributions for anothgf,t the numerical inverse Laplace transformation method can
N. This means that the reduction technique for RCG intgfa appjied toonly linear circuits, but we use this method in
connects 18] may be applicable to RLCG interconnects. e to investigate the effects of the reduction approximat-
Using these exact poles, we calculated the residues byifiine admittance matrices (3) with the partial fractions (13).
least squares method. The frequency response Curves apRigx- 4 shows the transient response waveforms. We found

imated by substituting the obtained residues and poles t0 {8 the more the number of poles increases, the more both
partial fraction (13) and the exact curves obtained from (3) QL eforms are well in agreement.

single conductor interconnect are shown in Fig. 2. As found
form this figure, the frequency response curves of the ad- lusi q K
mittance matrices have many peaks correspond to the pofesConclusions and remarks
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Fig. 4 Transient response for simple linear circuit of Fig. 3.

In this paper, we have proposed an algorithm for calculaf7] R. Gupta, B. Tutuianu and L. T. Pileggi, “The Elmore delay
ing the exact poles, the corresponding residues are estimated &S & bound for RC trees with generalized input sign#sE

9 P P . 9 - Trans. Computer-Aided Desigml. 16, pp. 95-104, 1997.
by the least squares method. Using the poles and reslduF8 , . ,

h el t of the admittance matrices of interconnects j C. J. Alpert, A Devgan and C. V. Kashap, 'RC delay metrics
€ach element o _ : for performance optimization/EEE Trans. Computer-Aided
approximated by partial fraction. Design,vol. 20, pp. 571-582, 2001.

In our simulations, it has been shown that the exact frd9] T. Kimura and M. Okumura, “An efficient reduction method of

: a substrate RC network modelEICE Trans. Fundamentals,
quency response curves and the curves approximated by par- ¢/ E84-A, pp. 698-704, 2001.

tial fractions have relatively good agreement. Further oy £ chiprout and M. S. NakhlaAsymptotic Waveform Evalua-
transient simulation making use of the numerical inverse of * tion and Moment Matching for Interconnect Analydisuwer
Lapalace transforms, the response waveforms obtained by our Academic Pub., 1994.

method become more accurate. as the numbearf the com- [11] E. Chiprout and M. S. Nakhla, * Analysis of interconnect net-
! works using complex frequency hopping(CHREEE Trans.

plex conjugate pairs increases. . Computer Aided Desigwol. CAD-14, pp. 186-200, 1995.
In future, we intend to find analytically the residues an@2] Q. yu, J. Meiling and E. S. Kuh, “Passive multipoint mo-
compare the results obtained in this paper. ment matching model order reduction algorithm on multiport

distributed interconnect networkdEEE Trans. Circuits and
Systems;ivol. 46, pp. 140-160, 1999.
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