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1. Introduction

Combinatorial optimization problems have an ability to
describe various actual problems mathematically. However,
there is a large disparity between to describe problems math-
ematically and to solve them. In order to solve a very difficult
problem, it takes a long time (e.g. more than the cosmos age)
by current computer system. That makes no sense actually.
The method using the Hopfield Neural Network (NN) [1]
has been proposed for combinatorial optimization problems
as an approximate mean based on search. In this method,
if we choose connection weights between neurons appropri-
ately according to given problems, we can obtain a good so-
lution by the energy minimization principle. However, the
solutions are often trapped into a local minimum and do not
reach the global minimum. In order to avoid this critical
problem, several people proposed the method adding some
kinds of noise to the Hopfield NN. Many researchers sug-
gested that intermittency chaos near the three-periodic win-
dow of the logistic map gains the best performance [2]. In or-
der to make clear the reason why intermittency chaos is better
than fully developed chaos, we have investigated the perfor-
mance with the burst noise generated by the Gilbert model
for traveling salesman problems [3, 4] and quadratic assign-
ment problems(QAP) said to be one of most difficult to solve
in the combinatorial optimization problems [5]. In those re-
sults, we have confirmed that the Hopfield NN with noise can
find a lot of various solutions. It is very important to find a
lot of various solutions when the networks do not know the
optimal solution. However, the Hopfield NN with noise has
some problems: “The solution of the network keeps staying
at the same state during a certain period.” “The solution of
the network comes into the states found before a number of
times.” By avoiding these problems, the network could find a
lot of nearly optimal solutions.

In this study, we connect some Hopfield NNs with chaos
noise like hierarchical networks in order to find a lot of nearly
optimal solutions. The weights of neurons are configured as
the same and each network operates by itself. We propose a

method connecting some Hopfield NNs with chaos noise and
evaluate this method by solving QAP. In the simulated results,
we confirm that the connected Hopfield NNs with chaos noise
can search a broad range of energy function and find many
nearly optimal solutions.

2. Solving QAP with Hopfield NN

Various methods are proposed for solving QAP which is
one of the NP-hard combinatorial optimization problems.
QAP is expressed as follow: given two matrices, distance ma-
trix C and flow matrix D, and find the permutation p which
corresponds to the minimum value of the objective function
f(p) in Eq. (1).

f(p) =
N∑

i=1

N∑
j=1

CijDp(i)p(j), (1)

where Cij and Dij are the (i, j)-th elements of C and D,
respectively, p(i) is the i-th element of the vector p, and N
is the size of the problem. There are many real applications
which are formulated by Eq. (1). One example of QAP is to
find an arrangement of factories to make a cost the minimum.
The cost is given by the distance between the cities and the
flow of the products between the factories.

Other examples are the placement of logical modules in an
IC chip, the distribution of medical services in a large hospi-
tal, and so on.

Because the QAP is very difficult, it is almost impossible to
solve the optimum solutions in larger problems. The largest
problem whose optimal solution can be obtained may be only
36 in recent study [6]. Further, computation time is very long
to obtain the exact optimum solutions. Therefore, it is usual
to develop heuristic methods which search nearly optimal so-
lutions in reasonable time.

For solving an N -element QAP by the Hopfield NN,
N×N neurons are required and the following energy func-
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tion is defined:

E =
N∑

i,m=1

N∑
j,n=1

wim;jnxjn +
N∑

i,m=1

θimxim. (2)

The neurons are coupled each other with the synaptic con-
nection weight. Suppose that the weight between (i, m)-th
neuron and (j, n)-th neuron and the threshold of the (i, m)-th
neuron are described by:

wim;jn = −2
{

A(1 − δmn)δij

+Bδmn(1 − δij) +
CijDmn

q

}

θim = A + B

(3)

where A and B are positive constants, q is a normaliza-
tion parameter to correspond given problems, and δ ij is the
Kronecker’s delta. The states of N×N neurons are asyn-
chronously updated due to the following difference equation:

xim(t + 1) = g


 N∑

j,n=1

wim;jnxjn(t)

− θim + βzim(t)
) (4)

where g is a sigmoidal function defined as follows:

g(x) =
1

1 + exp
(
−x

ε

) (5)

zim is an additional noise, and β limits the amplitude of the
noise.

Also, we use the method suggested by Sato et al. (1.1 in
[7]) to decide firing of neurons.

3. Chaos Noises

In this section, we describe chaos noise injected to the Hop-
field NN. The logistic map is used to generate chaos noise:

ẑim(t + 1) = αẑim(t)(1 − ẑim(t)). (6)

Varying parameter α, Eq. (6) behaves chaotically via a
period-doubling cascade. When we inject chaos noise to the
Hopfield NN, we normalize ẑim by Eq. (7).

zim(t + 1) =
ẑim(t) − z̄

σz
(7)

Where z̄ is the average of ẑ(t), and σz is the standard devia-
tion of ẑ(t). Figure 1 shows an example of the time series of
the chaos noise.
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Figure 1: Chaos noise. α=3.8274.

4. Connected Hopfield NNs

In this study, we connect some Hopfield NNs with chaos
noise like hierarchical networks in order to find a lot of nearly
optimal solutions. We consider that the connected Hopfield
NNs with chaos noise can search a broad range of energy
function.

The connected Hopfield NNs with chaos noise is shown in
Fig. 2. In this figure, ● show the firing neuron, ⊗ show the
connection neuron. The weights of neurons are configured as
the same and each network operates by itself. We consider
that reflecting the firing pattern of one network to the firing
pattern of the next network by connecting with the neurons
between the two networks is important. The K-th network
selects one neuron from the firing neurons of the (K-1)-th
network at random, and we connect the selected neuron with
the neuron at the same position as the selected neuron in the
K-th network. The output of the connected neuron in the K-
th network is set to zero.

K-th
network

(K-1)-th
network

Nn-th
network

Figure 2: Connected Hopfield NNs.
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Figure 3: Frequency distribution of solutions.

5. Simulated Results

The problem used here was chosen from the site QAPLIB
which collects the bench mark problems. We carried out com-
puter simulation for “Tai12a” using connected 2～20 Hop-
field NNs with chaos noise. The global minimum of this
problem is known as 224416. The parameters of the Hop-
field NN are fixed as A = 0.94, B = 0.94, q = 30000 and
ε = 0.02 and the amplitude of the injected chaos noise is
fixed as β = 0.5. The total number of updating the network
is 12000. For example, the case of connecting 4 networks, the
number of updating the per 1 network is 3000, and the total
number of updating the 4 networks is 12000.

Next, we explain how to accept solutions. The connected
Hopfield NNs with the chaos noise searches various solu-
tions. However, the state of the Hopfield NN sometimes stays
around a group of several solutions. We consider that such a
behavior is not useful to find the optimal or nearly optimal
solutions. So, we take the only-different-solutions method.
Namely, we take into account the solutions which have not
found ever.

5.1. Frequency distribution

The results of the frequency distribution when the some
Hopfield NNs with chaos noise are connected is shown in
Fig. 3. For comparison, the result of the only 1-Hopfield NN
with chaos noise is shown in this figure. The horizontal axis is
cost calculated by Eq. (1) and vertical axis is frequency. The

frequency means the number of the accepted solutions with
the corresponding costs found during 12000 iterations. We
can see that a lot of the nearly optimal solutions are found for
the case of connected some Hopfield NNs with chaos noise.
When the number of connection Hopfield NNs with chaos
noise is large, the networks can find many good solutions.
On the other hand, only a small number of the nearly optimal
solutions are found for the only 1-Hopfield NN with chaos
noise.

5.2. Depth 1

Until now, we have proposed two methods [8] to appreciate
finding a lot of nearly optimal solutions.

The first evaluation method Depth 1 is defined as

Depth 1 =
n∑

k=0

{f(pk) − D∞}2 (8)

where D∞ is a constant which is large enough to include the
costs of all solutions, n is the number of the accepted solu-
tions and the cost f(pk) is calculated by Eq. (1) using the
permutation pk corresponding to the k-th accepted solution.

The calculated result of Depth 1 is shown in Fig. 4. The
horizontal axis is number of connected networks and vertical
axis is Depth 1. In this figure, Depth 1 becomes larger as
the number of the connected networks increases. We consider
that the connected Hopfield NNs with chaos noise can obtain
good performance to find a lot of solutions.
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Figure 4: Depth 1 for Tai12a (D∞ = 340000).

5.3. Depth 2

The second evaluation method Depth 2 is defined as

Depth 2 =
n∑

k∈kg

{f(pk) − Dth}2

−
n∑

k/∈kg

{f(pk) − Dth}2

where kg = {k | f(pk) ≤ Dth}.

(9)

This evaluation has an advantage such that we can set the
threshold Dth according to the requirement. We consider
that finding a lot of bad solutions makes the performance of
the network worse. However, the value of Depth 1 increases
even if the obtained solution is very bad. Hence, in this eval-
uation, we not only set up a threshold but give a penalty ac-
cording to the cost. Namely, if the network finds a solution
with the cost more than a given threshold value, the value of
Depth 2 is reduced.

The calculated result of Depth 2 is shown in Fig. 5. The
horizontal axis is number of connected networks and vertical
axis is Depth 2. In this figure, Depth 2 becomes smaller as
the number of the connected networks increases. This result
shows that the networks find a lot of nearly optimal solutions
as well as far optimal solutions. From this result, we can see
that there is an appropriate number of connecting networks to
find only good solutions.

6. Conclusions

In this study, we connected some Hopfield NNs with chaos
noise like hierarchical networks in order to find a lot of nearly
optimal solutions. The weights of neurons are configured as
the same and each network operates by itself. We proposed
method connecting some Hopfield NNs with chaos noise and
evaluated this method by simulating QAP. In the simulated

-1.4e+11

-1.2e+11

-1e+11

-8e+10

-6e+10

-4e+10

-2e+10

0

2e+10

2 4 6 8 10 12 14 16 18 20

D
ep

th
_2

Number of networks

Figure 5: Depth 2 for Tai12a (Dth = 285000).

results, the connection method got good performance to find
a lot of nearly optimal solutions of QAP. We confirmed that
the connected Hopfield NNs with chaos noise can search a
broad range of energy function and find many nearly optimal
solutions.
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