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Markov Chain Modeling of Intermittency Chaos
and its Application to Hopfield NN for QAP

Yoko Uwate *

Abstract — In this study, a modeling method of the
intermittency chaos using the Markov chain is pro-
posed. The performances of the intermittency chaos
and the Markov chain model are investigated when
they are injected to the Hopfield Neural Network
for a quadratic assignment problem. Computer sim-
ulated results show that the proposed modeling is
good enough to gain similar performance of the in-
termittency chaos.

1 INTRODUCTION

Intermittency chaos [1] is deeply related to the edge
of chaos [2] and many people suggest that such a be-
havior between order and chaos gains better perfor-
mance for various kinds of information processing
than fully developed chaos. One good example of
this is an application of chaos to the Hopfield Neu-
ral Networks (Hopfield NN) [3] solving combinato-
rial optimization problems to avoid trappings of the
solutions into a local minimum. Hayakawa et al.
pointed out the chaos near the three-periodic win-
dow of the logistic map gains the best performance
for solving traveling salesman problems (TSP) [4].
However, the reason why the intermittency chaos
exhibits such a good performance has not been clar-
ified. Therefore, it is very important to make sim-
pler models of the good characteristics of the in-
termittency chaos and to investigate their detailed
properties.

In this study, we propose a modeling method of
the intermittency chaos obtained from the logistic
map by using the Markov chain. Various people
have already proposed the Markov chain modelings
of chaotic systems [5]-[7]. The modelings have suc-
cessfully applied to the chaos-based spread spec-
trum communication systems for the purposes of
the noise cleaning of chaotic sequences [5] and the
analytical estimation of the performance [6]. Fur-
ther, the modeling has been extended to generate
more complex nonlinear phenomena such as self-
similarity [7]. These modelings are effective in the
sense that the models could generate almost all the
phenomena observed from the original chaotic sys-
tem. However, it is not appropriate to reveal the
reasons of the good performance of the intermit-
tency chaos. Therefore, in this study, we pay our
attentions only on the distribution of the lengths of
the laminar parts and the burst parts, which seems
to be the most distinguished feature of the inter-
mittency chaos. The proposed modeling using the
Markov chain is completely different from those in
the references on the point that each state in the
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Markov chain is not the quantized value (or the in-
terval) of the variable but the behavior of the suc-
cessive orbits. As a result, the model becomes very
simple and enhances the feature of the intermit-
tency chaos. In order to confirm that the proposed
model has the good property of the intermittency
chaos, we investigate the performances when the in-
termittency chaos and the Markov chain model are
injected to the Hopfield NN for quadratic assign-
ment problems (QAP), which is said to be much
more difficult to be solved than TSP. Computer
simulated results show that the proposed model-
ing is good enough to gain similar performance of
the intermittency chaos.

2 INTERMITTENCY CHAOS

We consider the logistic map to generate chaotic
time series;

2(t+1) = a2(t)(1 — 2(t)). (1)
Varying parameter a, Eq. (1) behaves chaotically
via a period-doubling cascade. Further, it is well
known that the map produces intermittent bursts
just before periodic-windows appear. Figure 1
shows an example of the intermittency chaos near
the three-periodic window. As we can see from the
figure, the chaotic time series could be divided into
two phases; laminar part of periodic behavior with
period 3 and burst part of spread points over the
invariant interval. As increasing «, the ratio of the
laminar parts becomes larger and finally the three-
periodic window appears.

AR R T P e R

W s
2(t)
0s

Figure 1: Intermittency chaos for a«=3.827940.

3 MARKOV CHAIN MODELING

In this section, we model the intermittency chaos
by using the Markov chain.
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At first, we distinguish the laminar part and the
burst part of the intermittency chaos. Because we
treat only the intermittency chaos near the three-
periodic window, we regard three successive se-
quences starting from a point whose value is 0.9444
or more as one-period of the laminar part. Other
points are regarded as the burst part.

In order to make the Markov chain model pre-
cisely, we counted the length of the laminar parts.
The frequency of each period of the laminar part
during 100,000 iterations of the logistic map is
shown in Fig. 2. We can see that the graph does not
obey any simple scaling rules. Namely, the length
of the laminar part is bounded and the maximum
value of the length takes a peak. Though we omit
the explanation of this reason, this property can
be easily derived from the mechanism of the inter-
mittency chaos. We consider that this is the most
distinguished feature of the intermittency chaos.
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Figure 2: Distribution of period of laminar part.
(Intermittency chaos for a=3.827940.)

In order to model the above-mentioned feature
of the intermittency chaos, we propose the Markov
chain as shown in Fig. 3 where P(Sk|S;) means the
transition probability from the state S; to the state
Sk, and

P(Sk+1]|Sk)+P(So|lSk) =1 (k=0~L-1) (2)
must be satisfied. In this Markov chain, the
state Sy corresponds to the burst part. The
states S1 ~ S correspond to the laminar parts
{0.956,0.160,0.514} and the subscript k& of Sy, indi-
cates the length of the continuing laminar part at
that time.

P(S1|S0) P(S:[S1)

P(S[S2) P(SL|St1)

P(So[S0)

P(So|S2)

Figure 3: Markov chain.

If we denote the stationary probability for the
state Sk as Q(Sk), the transition probabilities sat-
isfy the following equations.

L—1
Qs = { 2= P(So]S)Q(S) +Q(SL) (k=0)
P(Sk‘skfl)Q(Skfl) (0 <k< L)
®3)
L
> QSK) = 1. 4)
k=0

We derive the stationary probabilities of the
Markov chain from the simulated data of the in-
termittency chaos by counting the number of the
corresponding state. Further, the transition prob-
abilities are calculated from the stationary proba-
bilities by using Eq. (3).

Figure 4 shows the time series of the obtained
Markov chain model for L = 15. In order to check
the statistical property of the obtained time series,
we counted the length of the laminar part. The
result is shown in Fig. 5. We can say that the result
is very close to that in Fig. 2.

Further, we produce the Markov chain models for
various sizes of the maximum length L of the lam-
inar part. The comparison of the properties of the
original intermittency chaos and the Markov chain
model is summarized in Table 1. We can confirm
that the properties of the Markov chain models are
similar to those of the original intermittency chaos.

2(t)

Figure 4: Time series of the Markov chain model
for L=15.

4 Application to Hopfield NN for QAP

As an example of applications of the intermittency
chaos and the Markov chain model, we investigate
their performances when they are injected to the
Hopfield NN for QAP in order to avoid the local
minimum trapping problems.

QAP is expressed as follow: given two matrices,
distance matrix C' and flow matrix D, and find the
permutation p which corresponds to the minimum
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Figure 5: Distribution of period of laminar part.

(Markov chain model for L=15.)

Table 1: Properties of intermittency chaos and
Markov chain model.

Average length H

Ratio of Taminar

H ‘ part of laminar part

[ L ] Chaos [ Markov [ Chaos [ Markov ||
7 04215 ] 04156 ] 3.1495 [ 3.0789
9 [[0.4714 ] 0.4580 [ 3.8271 | 3.7139
1T ] 0.5049 [ 0.5049 || 4.3486 | 4.2729
13 ] 0.5348 [ 0.5289 || 4.9732 | 4.9216
15 ][ 0.5558 | 0.5524 [ 5.4389 | 5.2984
17 ] 0.5798 | 0.5700 || 5.9185 | 5.7266
19 ][ 0.5905 | 0.6083 [ 6.5688 | 6.5358
21 ][ 0.6251 | 0.6313 7.0888 | 7.1835
23 ][ 0.6422 | 0.6424 || 7.4430 | 7.3444
25 [[ 0.6445 | 0.6427 || 7.4853 | 7.4764
30 || 0.6878 [ 0.6804 || 9.2968 | 8.8704
40 ][ 0.7261 | 0.7196 | 11.5463 | 11.1663
50 || 0.7655 [ 0.7580 || 13.6257 | 12.8656
70 1] 0.8240 [ 0.8167 | 19.7186 | 19.2385
100 || 0.8563 | 0.8532 || 24.8647 | 24.4863

value of the objective function f(p) in Eq. (5).

N N
F®) =Y CiiDpiinpiss

i=1j=1

(®)

where C;; and D;; are the (i, j)-th elements of C
and D, respectively, p(i) is the i-th element of vec-
tor p, and N is the size of the problem. There
are many real applications which are formulated by
Eq. (5).

Because QAP is very difficult, it is almost impos-
sible to solve the optimum solutions in larger prob-
lems. The largest problem which is solved by deter-
ministic methods may be only 20 in recent study.
Further, computation time is very long to obtain
the exact optimum solutions. Therefore, it is usual
to develop heuristic methods which search nearly
optimal solutions in reasonable time. For solving
N-element QAP by the Hopfield NN, NxN neu-
rons are required and the following energy function

is defined to fire (¢, j)-th neuron at the optimal po-
sition:

N N N
E= § § Wim;jnTimTjn + E Himxinr (6)
i,m=1j,n=1 i,m=1

The neurons are coupled each other with the synap-
tic connection weight. Suppose that the weight be-
tween (4, m)-th neuron and (j, n)-th neuron and the
threshold of the (i,m)-th neuron are described by:

Wim;jn = *Q{A(l - 5mn)6ij
D
+B3mn (1 — 8;5) + %} (7)
eim = A+B

where A and B are positive constants, and d;; is
Kronecker’s delta. The states of N XN neurons are
unsynchronously updated due to the following dif-
ference equation:

N
Tim(t+1) =g Z Wim:jnjn (1)

jn=1

+ Oim + Bzim(t)>

(®)

where g is sigmoidal function, z;,(¢) is the inter-
mittency chaos or the Markov chain model, and (3
limits amplitude of the injected time series. Note
that we normalize Z;,, by Eq. (9) before the injec-
tion.

Zim(t) — 2

Oz

where Z is the average of 2(t), and o, is the stan-
dard deviation of 2(¢). Further, we use the method
suggested by Sato et al. (1.1 in [8]) to decide firing
of neurons.

5 Simulated Results

The problem used here is chosen from the site
QAPLIB which collects the bench mark prob-
lems [9]. We carried out computer simulations for
the problems with various sizes. The results for
“Nugl2” are shown in this section. The global min-
imum of this problem is known as 578. The pa-
rameters of the Hopfield NN are fixed as A = 1.0,
B =1.0, ¢ = 100 and € = 0.02 and the amplitude
of the injected time series is fixed as = 0.6. The
number of updating the network NV;; is 10, 000.

In order to evaluate the performance precisely,
we neglect the once-appeared-solutions and use the
two functions proposed in our previous study [10].

5.1 Depth_1
The first function Depth_1 is defined as

Depth_1 = Z {f(pr) — Doo}2

k=0

(10)
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where Do, is a constant which is large enough to
include the energies of all solutions, n is the num-
ber of the accepted solutions and the energy f(px)
is calculated by Eq. (5) using the permutation py
corresponding to the k-th solution.

The calculated result of Depth_1 is shown in
Fig. 6. We confirm that both the intermittency
chaos and the Markov chain model exhibit similar
tendency such that Depth_1 decreases as the maxi-
mum length of the laminar part L increases. How-
ever, the Depth_1 for the Markov chain model is
not as large as those for the intermittency chaos.
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Figure 6: Result of Depth_1 (D = 1000).

5.2 Depth_2

Next, we calculate Depth_2 proposed to enhance
the performance for finding a lot of good solu-
tions [10]. The function Depth_2 is defined as fol-
lows:

Depth 2 = Z {f(pr) - Dth}2

keky
SS e - pay D
kk,
where  ky ={k | f(pxr) < Din}.

The calculated result of Depth_2 is shown in
Fig. 7. The Markov chain model gains similar per-
formance to the intermittency chaos. This result
shows that the Markov chain model has the char-
acteristic to find a lot of nearly optimal solutions
which is the important characteristic of the inter-
mittency chaos.

6 Conclusions

In this study, a modeling method of the inter-
mittency chaos using the Markov chain has been
proposed. The performances of the intermittency
chaos and the Markov chain model were inves-
tigated when they were injected to the Hopfield
Neural Network for QAP. Computer simulated re-
sults showed that the proposed modeling was good
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Figure 7: Result of Depth_2 (Dy, = 812).

enough to gain similar performance of the intermit-
tency chaos.
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