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SPICE-Oriented Oscillators Analysis Using
Harmonic Balance Method

H. Yabe * Y. Yamagami*

Abstract — In this paper, we consider reactance os-
cillators having a negative resistances. It is known
that the oscillators will have multiple oscillations
near at the anti-resonant frequencies of the reac-
tance sub-circuits. We propose here the harmonic
balance method for solving the multiple oscillations,
whose determining equations are replaced by the
coupled equivalent sine and cosine circuits. The cir-
cuits can be solved with STC(solution curve trac-

ing circuit) based on the Newton homotopy method.
Thus, the stable and unstable oscillations can be eas-
ily found with the SPICE simulation.

1. INTRODUCTION

Analysis of oscillators are very important for design-

ing communication circuits because we need to know
the exact oscillator frequency for mixers and modula-
tors. There are many types of oscillators such as Col-
pitts, Hartley, crystal oscillators which have a unique
oscillating frequency. On the other hand, there are
many coupled oscillators with the same oscillator fre-
quency which may happen interesting phenomena such
as multi-mode oscillations [1]-[2]. These phenomena
can be analytically explained by the analysis of the
weakly nonlinear coupled oscillators [1]. Furthermore,
it is known that the coupled oscillators sometimes have
quasi-periodic oscillations and /or chaos phenomena [3].
In this paper, we consider the steady-state analysis of
oscillator circuits having multiple oscillations. It is very
difficult task to find out all the stable and unstable os-
cillations. There have been published many papers con-
cerning to the steady-state analysis of oscillator circuits
having a unique oscillation [4]-[9]. There are two types
of the techniques such as time-domain and frequency-
domain analyses. The references [5]-[7] belong to the
former technique, and [8],[10] to the latter. Note that in
the harmonic balance method, if we assume the DC and
the K higher harmonic components for N-variables, the
determining equation is described by N(2K + 1) alge-
braic equations, because the fundamental oscillator fre-
quency must be considered as the additional variable in
the analysis.
In the illustrative example, in section 4, we consider
a reactance oscillator consisted of Cauer circuit and a
negative resistor. We can easily synthesize the reac-
tance Cauer circuit by specifying the resonant and anti-
resonant frequencies. Thus, we can realize an oscillator
having multiple oscillations whose oscillations will be
arisen around the anti-resonant frequency points [11]-
[13]. We propose here a SPICE-oriented Newton homo-
topy algorithm based on the harmonic balance method
for the analysis of the multiple oscillations, which we
needs not to derive the troublesome circuit equation,
determining equation and the Jacobian matrix. The
analysis can be easily carried out with the transient
analysis of SPICE.

2. NEWTON HOMOTOPY METHOD TO
THE DETERMINING EQUATION
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In order to show the ideas of our algorithm, let us
consider a reactance oscillator with a negative resis-
tance as shown by Fig. 1.”
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Fig. 1 A reactance oscillator.

Assume that the nonlinear characteristic of the negative
resistance is discribed by the power series as follows:

i =Co+ Cov+ Cov” + Cov” + -+ - (1)
We also assume the waveform in the following form;
K
v =Vo+ Vocoswt + Z[ij,g cos kwt + Vig—p sin kwt).
k0D
2)

Observe that the waveform does not contain sinwt-
component, because we can arbitrarily choose the time
origin in the analysis of the autonomous system. Apply-
ing the harmonic balance method to the circuit equation
shown by Fig. 1, we have the determining equation as
follows:

Fy(Vo, Vi, -+, Vik-o,w) =0 --- DC
F—‘(Vﬂawa"',VHK,m,w):o ... coswt
Fo(Vo, Vo, -+, Vok—n,w) = 0 sinwt
Fare_o(Vo, Vo, -, Va0, cos Kot
Fuk (Vo, Vo, -+, Vig-o,w) = . sin Kwt

3)
where the variabale w denotes the fundamental fre-
quency component to be determined, and K is the
highest frequency component. Thus, the determining
equation is described by a set of algebraic equations
consisted of (2K + 1)-variables and the same number
of equations. Note that it is not easy to solve the non-
linear equation because it may have many solutions for
the multiple oscillator circuit.

For simplicity, we set (3) to

fv)=0, ve ROKTT. £() : ROKOT,, RUKTT 4)
where v = [VA, V5, - -+, Var—n,w]”. Applying the New-
ton homotopy method [14] to solve (4), we have the fol-
lowing relation:

F(v,p) =£(v) + (p — Df(vo) = 0, (5)
where p is an additional variable, and vg is an initial
guess. Thus, the solution curve starts at (vg,p = 0),
and the solutions satisfying (4) is obtained at p =1 in

POf course, the method can be applied to oscillators con-
taining the multiple nonlinear resistors.
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2K+2 dimensional space. The curve can be traced by
the application of the arc-length method as follows:

F(v,p)=0

OK0O0 o 0

2:@&>+<@):1 ; (6)
ds ds

100

where s is the arc-length from the starting point on
the solution curve. These algebraic-differential equa-
tion can be transformed into a set of nonlinear equations
by backward-difference method [16]. The algorithm is
exactly equal to the transient analysis of SPICE, so
that we can use SPICE for the curve tracing algorithm
[17]. The circuit diagram is shown in Figs. 2(a) and
(b).
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(a)Circuit diagram

(b) sTC

Fig. 2 Circuit diagram of the Newton homotopy
method

In the above figure, "VCCS” denotes a voltage-
controlled current source, and the current sources

fi(mp) and I, I, of STC are given by

fitv,p) = Fi(v,p) —vi, i=1,2,...,.2K +1
OKOO

> () 0= ()
(7

Note that when we assume the voltage difference at 1[(]
resistance to be equal to —v;, then we have

—v; = Fi(v,p) —vi, i=1,2,...,2K+1, (8)

which satisfy the relation F(v,p) = 0. On the other
hand, STC(solution curve tracing circuit) realizes the
second term of (6) by setting arc-length s with time
t, where Rp is a sufficiently large dummy resistance
to avoid a L-J cut set. Thus, we can easily trace any
homotopy path from an arbitrarily chosen initial guess
vg and find the multiple oscillations at p = 1 using the
transient analysis of SPICE.

3. EQUIVALENT CIRCUIT MODEL OF THE
DETERMINING EQUATION

In this section, we consider the equivalent sine and
cosine circuits corresponding to the determining equa-
tion (4) for a weakly nonlinear circuit [15]. The equiva-
lent circuits consist of the resistive sub-circuits, each of
which has the same topology as the original one except
that the reactance elements are replaced by the voltage-
controlled current sources and/or the current-controlled
voltage sources.

I, =

3.1 Nonlinear inductor
Assume the inductor flux is described by the current-
controlled characteristic as follows:”

#(ir) = Loir, + Loit, + Laig + - - . (9)

UNonlinear characteristics must be described by the
power series functions.

Let us consider the terms until the Kth order higher
harmonic components of w as follows:
K
ir=1Ip+ Z [z ok o cos kwt + I g sin kwt].  (10)
k0D

Substituting (10) into (9), we have the Fourier expan-
sion as follows

K
QE(ZL) > dpp0+ Z[@L,Dk,] cos kwt + @, g sin kwt],
kOO
(11)
where ®1.n,®ro, -+, Pr,ox are analytical functions of
Ipo,Ipg, -+, In,okx. Thus, the inductor voltage is given
by
o do (i
i1 (in) = ¢>C(ltL)
(12)
= Z[*kWQL.Dk—D sin kwt + kw@L,gk Ccos kwt].

k0D

Thus, the sine and cosine components for the kth order
higher harmonic component are respectively given by

Viok = —kw®r k-0, Veok—o = kw®r ok, (13)

=12,... K,
where Vi orx—n, Vo are the amplitudes of the voltages
for the kth frequency components. Thus, the inductor
is replaced by a pair of the coupled current-controlled
voltage sources as shown in Fig. 3.

3.2 Nonlinear capacitor
Assume that the capacitor charge is described by the
voltage-controlled characteristic as follows:

G(ve) = Cove + Covd + Covg + -+ (14)
Set the voltage waveform vc as follows:
K
ve = Voo + Z[VC'M’D cos kwt + Ve,ok sin kwt]. (15)
KO0
Substituting (15) into (14), we have
K
G(vc) = Qco + Z[Qc,mk{ cos kwt + Q o,k sin kwt],
k00
(16)

where Qco, Qcn, . .., Qc,ox are analytical functions of
Veo, Ven, ..., Ve,nkx. Then, the voltage-current charac-
teristic of capacitor is given by

5 dg(ve)

telve) = = 5=

= Z[*kac,uk_] sin kwt 4+ kwQc,ox cos kwt].

kOO
(17)

Thus, the sine and cosine components for the kth order
harmonic are respectively given by

Ikc,uk = —kwQc,0k-0, Icok-0 = kwQc ok,

(18)

2, K,

where —kwQc, k-0, kwQc,nk are the currents of the
kth frequency components of the nonlinear capacitors.
Thus, the capacitor is replaced by a pair of the voltage-
controlled current sources as shown in Fig. 3.
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3.3 Nonlinear resistor

There are two types of the voltage-controlled and
current-controlled nonlinear resistors. We consider here
the voltage-controlled resistor as follows:

c(ve) = Heo + Hewe + Honvg + Hoovg + -+ - (19)

Assume the voltage waveform vg as follows:
K
vg = Vao + Z[VG’E’C7D cos kwt + VG,DIc sin kwt]. (20)
KO0

Substituting (20) into (19), we have
K
%c(’Uc) ~ Jon+ Z[IAGJ;C,D cos kwt + IAG,D;C sin kwt].
k00
(21)
Thus, the kth order higher harmonics of the sine and
cosine components are respectively given by

Ig,ok = lcok, leok-0= Igok-n,

(22)
Note that the voltage-controlled nonlinear resistors are

described by the voltage-controlled resistors” as shown
in Fig. 3.
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Fig. 3 Equivalent cosine and sine circuits
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4. AN ILLUSTRATIVE EXAMPLE

4.1 Steady-state analysis

Consider a Cauer oscillator with a negative resistor as
shown in Fig. 4. Let the nonlinear characteristic be
given by

ic = —Chvg + C]’UE;, Cog=1. Chp=1. (23)
At first, we design the reactance Cauer sub-circuit such
that it has the following resonant and ant-resonant fre-
quencies:

Anti — resonant frequencies : wog = 1, won =4, wop =6 }

Resonant frequencies : wonp =2, wmn =5

Then, we have the following circuit parameters shown
in Fig. We also introduce small resistances for all

the inductors.

UThis characteristic can be easily realized by the analog
behavior model in SPICE.

Ly T, Ly 13

iGl
+
% TC1 -rz Tjs Ls
Fig. 4 Cauer Oscillator
Co=0.1, C3=0.343, Cy=0.439, Lp=0.417
Ly =0262, Ly=1.058, ro=---=rg=0.01

Note that since the nonlinear voltage-current charac-
teristic of the resistor is symmetrical with respect to
the origin, we can only consider the odd order higher
harmonic components. Hence, we can assume the wave-
form vg as follows:

K

va(t) = Vooe coswt + Z[VD]CD]’DC cos(2k + 1)wt
kOO
+V]chD,DS sin(2K + l)wt]

(24)
Observe that we neglect the term of sinwt in (24) be-
cause of the autonomous system. Assume that the in-
ductor and capacitor characteristics are linear. Then,
the inductor and capacitor are replaced by the simple
linear current-controlled voltage sources and voltage-
controlled current sources in the sine and cosine curcuits
as shown in Fig. 5. In the simulation, although we con-
sidered until the 5th order higher harmonic component
(K = 2), the equivalent circuit for the fundamental os-
cillator frequency combined by the Newton homotopy
method is shown in Fig. 5 for simplicity.

f Tic OLiyg oy Tias olalnsr s

= A B —
) + + + AOCV3s
coset : LD Vi) ocivis Vie(PyOCaViss  Visc ’
(p=Dfi(va) - - - OLil;s

Ins-OLinc r, lc-olae 1, lic

54 B
Lo + + A 9CsVise
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(p=Df:(ve) - - - - oLl 3¢
+
omega : ® i o Vi~ @

Fig. 5 Equivalent circuit describing the determining
equation for the fundamental frequency component

n

Observe that each sub-circuit has the same structure
as the original one as shown in Fig. 4. The results
of solution curves are shown in Fig. 6(a) for s < 0
and (b)s > 0, where the solid line corresponds to the
frequency w. We have 6 solutions at p = 1 as follows:

wy =0, wy = 1.0878, wy = 2.0001,
wy = 3.6770, wy = 4.999, wy = 5.722.

25

Fundamental frequency component
20 o Stable solution
® Unstable solution
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Fig. 6(a) Homotopy curves, s <0, (b) s >0
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4.2 Verification of the solutions

Now we need to check the stabilities of the 6 solutions

in Fig. 6 by the variational technique, where the varia-

tonal equation at the solution (V, I) is directly obtained

by setting v = V 4+ Av,i = I + Ai in the circuit equa-
[ AD Av ]

tion, and have
Ai ] = A[ Ai

The stabilities are checked by calculating the eigenval-
ues of A. If it has the eigenvalues containing at least
one positive real part, the solution will be unstable and
otherwise it will be stable. Thus, we have the following
results:

(25)

Stable solutions: at wg, wg, and wp
Unstable solutions: at wg, wo, and wg

Observe that the solutions only at the anti-resonant
frequencies wn, wn, and wp are stable. These results
agree with the properties from the reference [11] and
are described in our method by showing the unstable
solutions with zero-amplitude ocsillations.

The transient waveforms starting from the initial
conditions estimated by our harmonic balance method
are shown in Figs. 7(a), (b) and (¢). The frequency
spectrums with FFT are shown in Figs. 8(a), (b) and
(c). The waveforms at w = 1.0556 is the most distorted,
and contains many higher harmonics. All of them have
the small errors because the waveforms still have the
higher harmonics larger than 5th higher harmonic com-
ponent.

ST E T
SRR

Fig. 7 The results of transient analysis whose initial
conditions are estimated from our harmonic balance
method.
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Fig. 8 Frequency spectrum for Fig.8 .
(a) w = 1.0556, (b) w = 3.6191, (c) w = 5.68

5. CONCLUSIONS AND REMARKS
In this paper, we proposed a simple algorithm us-

ing SPICE simulator for calculating multiple oscilla-
tions of a reactance oscillator, where we need not to

derive any troublesome circuit equations, and to solve
the determining equations. We only need to derive the
Fourier coefficients for nonlinear elements in the func-
tional forms, which can be done by the use of software
such as Mathematica [18].

The Cauer oscillator with multiple oscillations some-
times happen to have a quasi-periodic oscillations. It
seems that two stable oscillations are arisen in the same
time, independently. For the future problem, we want
to extend the algorithm to the practical circuits such as
crystal oscillators.
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