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ABSTRACT

The work is concerned with investigation of spatio-temporal
phenomena on mutually coupled CNN array. Besides pat-
tern formation and active wave propagation, we found that
other interesting spatio-temporal phenomena such as phase-
inversion-wave and classical waves can be also observed in
the same network structure. In particular, we focus our dis-
cussion on the relations of spatio-temporal phenomena and
temporal eigenvalues.

1. INTRODUCTION

Studies of dynamic phenomena in arrays composed of chaotic
[1]–[6] and oscillatory [7]–[9] elements are very important
for understanding various phenomena observed in natural
fields such as biology, physics, chemistry, etc. From the
middle of the last decade, the investigations about the spatio-
temporal dynamics in CNNs have been widely carried out,
and many papers have been published, where they have dis-
cussed pattern formations and various types of autowaves
such as excitability waves, concentration waves and so on.
Up to the present, these CNN arrays, which are composed
of chaotic oscillators [1]–[6], second order nonlinear circuit
obtained by the suitably “reducing” Chua’s circuit [7], and
etc. have been mainly considered. A common technique
in all these cases usually use the CNNs as the approxima-
tions of the various types of nonlinear partial differential
equations, especial the well-known reaction-diffusion equa-
tions that show Turing pattern and propagation phenomena
in various continuous media [10]. The purpose of this paper
is to study spatio-temporal phenomena occurred in a simpler
CNN structure - mutually coupled two-layer CNNs, based
on the CNNs’ temporal eigenvalues.

2. MUTUALLY COUPLED TWO-LAYER CNNS

The mutually coupled two-layer CNNs in this paper are de-
scribed as the extension of the single-layer continuous time
Chua-Yang CNN; their state equation is formulated as fol-

lows:

ẋ1;ij =−x1;ij +A1∗y1;ij+B1∗u1;ij+C1∗y2;ij+I1

ẋ2;ij =−x2;ij +A2∗y2;ij+B2∗u2;ij+C2∗y1;ij+I2

}

(1)
with output equation

y1,ij = 0.5(|x1,ij + 1| − |x1,ij − 1|)
y2,ij = 0.5(|x2,ij + 1| − |x2,ij − 1|)

}
(2)

for 1 ≤ i ≤ M and1 ≤ j ≤ N , where two mutually cou-
pled templatesC1 andC2 are introduced and the subscript
1 and 2 stand for first layer and second layer of the two-
layer CNN array. We assume that all cells remain in linear
region, then the solution of the linear system of the CNN in
general case has the following form for the simple temporal
eigenvalue.

x(t) =
2MN∑
i=1

〈ri,x(0)〉eλitqi (3)

wherex(t) is the state vector,qi is the eigenvector of the
system matrix,ri represents the reciprocal basis,x(0) is
the initial condition, and〈., .〉 denotes the scalar product in
R2MN . The solution shows various possibilities for the dif-
ferent ranges of the temporal eigenvalues. In the follow-
ing section, we investigate the spatio-temporal phenomena
based on the temporal eigenvalues in the two-layer CNNs.

3. SPATIO-TEMPORAL PHENOMENA

3.1. Pattern Formations and Autowaves

Many nonlinear partial differential equations (PDEs) have
shown to generate various types of nonlinear spatio-temporal
phenomena. The concept of reaction-diffusion CNNs have
been formalized to reproduce similar phenomena in [1], be-
cause they are mathematically described by a discretized
version of the following well-known system of nonlinear
partial equations – reaction-diffusion equations:

∂u

∂t
= f (u) + D∇2u (4)
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(a) (b) (c)

Figure 1: An example of tripe pattern formation withD1 =
0.2. (a) is initial state, (b) is transient result, and (c) is steady
output result.

(a) (b) (c)

Figure 2: An example of active wave propagation phenom-
ena. (a) is initial state, (b) is transient result, and (c) is
steady output result.

whereD is a diagonal matrix, which describes the intensity
of diffusive coupling between the components ofu. Sim-
ilarly, if we use the two-layer CNNs to approximate the
above reaction-diffusion equation withu∈ R2, f∈ R2,
then the two-layer CNNs can be written as follows:

ẋ1,ij = −x1,ij + a1y1,ij + c1y2,ij + d1∇2y1,ij

ẋ2,ij = −x2,ij + a2y2,ij + c2y1,ij + d2∇2y2,ij

}
(5)

Thus, We have the following results that, if at least one of
the temporal eigenvalues has positive real part, the CNN
constructed by the connection between diffusing cells will
become unstable in the linear region, and behave as pattern
formations or active propagation phenomena. The neces-
sary condition is described by (6), which is directly derived
from those conditions obtained Turing patterns in array of
coupled circuits [7].

(a1 − 1)
d1

+
(a2 − 1)

d2
> 0

[(a1 − 1)d2 − (a2 − 1)d1]
2 > −4d1d2c1c2


 (6)

Figure 1 shows a simulation example for pattern forma-
tion, which is carried out under a two-layer CNN array con-
sisted of100 × 100 cells with zero-flux boundary condi-
tion and the following parameter set:a1 = 2.6, a2 = 2.6,
d1 = 0.1, d2 = 0.01, c1 = −1, andc2 = 1. In Fig. 1, (a),
(b) and (c) are respectively the initial state, transient result
and steady output of the CNN. The simulation result indi-
cates that, the stripe pattern formation process starts from
the objects in the image (i.e. non-zero initial conditions),
propagates toward around the objects, generates new stripes

with almost the same geometry with the shape of original
initiated objects. Then, it propagates again until the whole
CNN array reaches a steady state. While the propagation
wave front collides with another wave front or the bound-
ary, the wave fronts annihilate without any interference and
reflection. Moreover, the density of stripe pattern can be ad-
justed by suitably changing the template parameters. From
this example, we have seen that the shape of stripe pattern is
dependent on its initial state of the CNN array. Thus, many
interesting stripe patterns such as the coats of animal, fin-
gerprint, and etc. may be regenerated by suitably selecting
initial conditions of the CNN array and the CNN parame-
ters.

Figure 2 shows another simulation example for active
propagation phenomena, which is carried out under the same
conditions with the last example. This simulation indicates
that two concentric circular waves are generated. Their wave
fronts propagate in all directions through the network from
the initialized positions. After the waves fronts collide with
boundary or collide with each other, they annihilate with-
out any interference and reflection. This propagation phe-
nomenon behaves as autowaves do.

3.2. Phase Wave Propagation Phenomena

A lot of studies on phase relationship of coupled oscilla-
tors or chaotic circuits have been widely carried out [6][9].
One of interesting spatio-temporal phenomena – phase in-
version wave has been observed in van der Pol oscillators
coupled by inductors as a ladder [9]. In this section, we
will investigate similarly dynamic behaviors encountered
in the simpler two-layer CNN array. Obviously, the CNN
must satisfy the following two conditions that the nonlin-
ear second-order cell in absence of coupling to its neighbor
cells oscillates with a limit cycle, and the whole CNN is
unstable (i.e., at least one of the temporal eigenvalues has
positive real). Next, let us observe how the phase difference
between adjacent cells propagates the CNN array. In Fig.
3(b), the vertical axes are the sum of the first layer outputs
of adjacent cells, the horizontal axes are time. Hence, the
diagram shows qualitatively how phase differences between
adjacent cells change as time goes, where the white regions
correspond to the state that two adjacent cell/oscillators are
anti-phase synchronization, and the black regions to the in-
phase synchronization. Figure 3(b) shows an example for
the wave propagation phenomena of the phase difference
that is observed from one-dimensional two-layer CNN ar-
ray composed of 18 cells with zero-flux boundary condition.
The initial state condition of the first layer of this CNN ar-
ray is set as Fig. 3(a), where the black squares denote having
value 1 and the white squares value -1, and the initial state
condition of the second layer is zero. The template is

A1 =
[−0.03 1.1 −0.03

]
, C1 =

[
0 −3 0

]
,
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x1;1 x1;i x1;18

(a)

(b)

Figure 3: Phase wave propagation phenomenon in one-
dimensional CNN array of 18 cells.

x1;1 x1;i x1;18

(a)

(b)

Figure 4: Anothor phase wave propagation phenomenon in
one-dimensional CNN array with different initial condition.

A2 =
[

0.03 1.1 0.03
]
, C2 =

[
0 5 0

]
,

B1 = B2 = 0, I1 = I2 = 0. (7)

Figure 4(b) shows another example for phase wave propaga-
tion with the different initial state conditions shown by Fig.
4(a). We observe that the anti-phase between adjacent cells
is transferred gradually from one end to the other end of the
CNN array, and is reflected when the states of anti-phase
collide with the end of array, or collide with each other.
This propagation process of phase exists continuously in the
two-layer CNN array, so called “phase-inversion-wave” [9].
The two simulations indicate that the phase wave propaga-
tion phenomena can be reproduced in the two-layer CNN
with simpler structure.

3.3. Classical Wave Propagation

We have shown in the above subsections that the two-layer
CNNs can reproduce many interesting nonlinear phenom-
ena, in which there is a common property that at least one

of temporal eigenvalues of the CNNs has positive real part.
However, when all of the temporal eigenvalues have zero or
negative real parts, what happens in the CNNs? We consider
the phenomena in this subsection.

Let us consider an autonomous two-layer CNN with mu-
tual coupling between layers. Its equation is described as
the following form:

ẋ1,ij = −x1,ij + (a1 + 1)y1,ij + c1y2,ij

+d1∇2y2,ij

ẋ2,ij = −x2,ij + (a2 + 1)y2,ij + c2y1,ij

+d2∇2y1,ij .




(8)

We assume that all cells remain in the linear region (y1,ij =
x1,ij , y2,ij = x2,ij). Thus, the equation (8) can be solved
by decoupling method [9], and its solution can be expressed
as a weighted sum ofM × N orthogonal space dependent
eigenfunctionsφMN (m,n; i, j) in the following form:

x1,ij(t)=
M−1∑
m=0

N−1∑
n=0

(αmne
λmn1t+βmne

λmn2t)φMN(m,n;i,j)

x2,ij(t)=
M−1∑
m=0

N−1∑
n=0

(γmne
λmn1t+δmne

λmn2t)φMN(m,n;i,j)




(9)

whereαmn, βmn, γmn, δmn are constants depending on the
initial conditions. λmn1, λmn2 are temporal eigenvalues,
which are influenced by spatial eigenvaluek2

mn correspond-
ing to spatial eigenfunction.

λmn[k2
mn] =

1
2

[(a1 + a2)±
√

(a1 − a2)2 + 4(k2
mnd2 − c2)(k2

mnd1 − c1)
]
(10)

For the zero-flux boundary condition, the spatial eigenfunc-
tion and eigenvalue can be assumed as the following form:

∇2φMN (m,n; i, j)=cos
(2i+1)mπ

2M
cos

(2j+1)nπ

2N
(11)

and
k2

mn = 4(sin2 mπ

2M
+ sin2 nπ

2N
) (12)

The equation (9) is important because the cell states of the
two-layer CNN are given as the time-dependent weighted
sums of spatial eigenfunctions. From this equation, it can
be derived that, if all the temporal eigenvalues have zero or
negative real part, all the states of the CNN are in the linear
region. Thus, the CNNs have the properties of the linear
space, such as superposition etc. Therefore, we can use this
CNN to model passive media with/without loss in the linear
space.

Figure 5 shows a simulation example for the wave prop-
agation phenomenon in a two-layer CNN array composed of
100 × 100 cells, which is executed by selecting the follow-
ing parameter set:a1 = 0, a2 = 0, d1 = −0.5, d2 = 0.5,

III-580



(a) (b) (c)

Figure 5: An example for the passive wave propagation phe-
nomena without loss. (a) is initial state, (b) and (c) show two
snapshots observed in different times.

(a) (b) (c)

Figure 6: An example for the passive wave propagation phe-
nomena with loss. (a) is initial state, (b) and (c) show two
snapshots observed in different times.

c1 = −5, andc2 = 5 (i.e., all the temporal eigenvalues of
the CNN are complex numbers with zero real part and the
isolated cell behaves as oscillator with limited cycle). The
simulation result shows that the circular waves propagating
from the initialized position are generated. These circular
waves propagate in all directions through the plane array
and their amplitudes decrease with propagating. When the
waves collide with each other, they don’t annihilate and re-
flect, but permeate through and superpose on each other.
When they collide with the boundary, the waves are re-
flected. Moreover, after the waves are repeatedly reflected
and superposed, the initialized positions become invisible.
These behaviors are completely different form those of non-
linear propagation phenomena, but behave as the classical
wave does. In this case, the CNN can be used for model-
ing passive media without loss. On the other hand, if we
select the parameter set to satisfy all temporal eigenvalues
of the CNN having negative real parts, then each cell state
will decay to zero, which can be derived from Eq. (9). This
situation is suitable for modeling passive media with loss.
For example, if the parameter set:a1 = −0.04, a2 = 0,
d1 = −0.5, d2 = 0.5, c1 = −5, andc2 = 5 is selected,
then all the temporal eigenvalues of the CNN are complex
numbers with negative real part and the isolated cell with-
out couple behaves as damped oscillator. Figure 6 shows
the simulation result. From the analysis of the simulation
result, we can see that the propagation phenomenon has the
same properties with the above one. However, the network
is calm at the end due to the temporal eigenvalues having
negative real part.

4. CONCLUSIONS

In this paper, we have investigated the spatio-temporal phe-
nomena in the two-layer CNNs in term of the temporal eigen-
values, and found many interesting spatio-temporal phenom-
ena. The necessary conditions for these phenomena have
been indicated. Based on our research results, the two-layer
CNN can be considered not only for modeling active me-
dia, but also for modeling passive media with/without loss.
Moreover, we found that an interesting phase wave propa-
gation phenomena can be produced in the same two-layer
CNN structure. All of these facts show that the two-layer
CNNs have a real potential for applications.
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