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Abstract

High frequency digital LSIs usually consist of many sub-
circuits coupled with multi-conductor interconnects embed-
ded in the substrate. They sometimes cause serious prob-
lems of the fault switching operations due to the time-delays,
crosstalks, reflections and so on. In order to solve these prob-
lems, it is very important to develop a user-friendly simu-
lator for the analysis of LSIs coupled with interconnects.
At the reduction algorithm, we first calculate the dominant
poles which give the large effects to the transient response,
and the corresponding residues are estimated by the least
squares method. Thus, the interconnect is replaced by the
equivalent circuit realizing the partial fractions.

1. Introduction

The analysis of high speed LSI chips is becoming more and
more important for their designing. The chips are usually
coupled with interconnects embedded in the substrate, and
interconnects sometimes cause the fault switching of chips
due to the signal delays, crosstalks and so on [1]-[8]. The
Elmore resistance-capacitance (RC) delay metric is popular
due to its simple closed-form expression, computation speed
and fidelity with respect to the simulation [3]. The closed-
form combining the delay and crosstalk is firstly obtained
in the reference [4]. Improved techniques [5]-[8] are also
proposed later for improving the accuracy and the practical
applications in the simulations.

Nowadays, AWE(asymptotic waveform evaluation)[9] is
widely used as a reduction technique of large scale net-
works coupled with interconnects, whose algorithm is based
on the moment-matching method and Padè approximation.
Unfortunately, one of the serious problems of the moment-
matching method is that the poles located far from the ori-
gin sometimes become erroneous, because the admittance or
impedance matrix via AWE is described in the form of power
series with the complex frequency s based on the Maclaurin
expansion. To overcome the problem, Nakhla et al. have
proposed CFH (complex frequency hopping) [10] for calcu-
lating the exact poles. The algorithm can find out the exact
poles by properly hopping the origin of Taylor expansion on
the complex axis. The other is based on a multi-point Padè
approximation [10]. Both of them need properly to choose
some points in the complex frequency domain to obtain the
exact Taylor series and Padè approximation. PRIMA (pas-
sive reduced-order interconnect macromodeling algorithm)
[11] is another reduction algorithm which is an extension of
the block Arnoldi technique to include guaranteed passivity.

In order to apply this algorithm to the circuits with inter-
connects, we need two steps such that the interconnect is
modeled by a finite order system, and afterward, Arnoldi-
based congruence transform is applied to the system to form
its reduced order model.

In this paper, we consider LSIs such that large scale gate-
array circuits are coupled with interconnects embedded in
the substrate. In this case, the capacitance component of
the interconnect is dominant compared to the inductance,
and the diffusion resistance is very large compared to those
of PCBs [2], so that we assume the interconnect as RCG
interconnect instead of RLCG in this paper. We first derive
the impedance matrix at the near and far end ports. We
prove that all the poles of the impedance matrix are located
on the negative real axis in the complex plane. The residues
are decided by the least-squares method in such manner that
the response curves coincide with those from the impedance
matrix in the complex frequency domain of interest. We
found from the simulation results that the impedance matrix
can be approximately described by the partial fractions with
the few poles located near the origin. The reduction rate is
very large especially for a large scale interconnect. Hence,
each element of the impedance matrix can be described by
a series of partial fractions, and the interconnect is easily
synthesized by the asymptotic equivalent circuit satisfying
the partial fractions. Thus, we can easily develop SPICE-
oriented simulator of LSIs coupled with RCG interconnects.

2. Poles and residues of the impedance
matrix

Now, consider a uniform N coupled RCG interconnect.
Assume the telegraph equation can be described by

dV(x, s)

dx
= −RI(x, s),

dI(x, s)

dx
= −(G+ sC)V(x, s) (1)

in the complex frequency domain, where R,C and G are
positive definite symmetric matrices. Let us introduce the
matrices Pv(s) and Pc(s) to transform them into the diag-
onal forms. Thus, we have

diag[λi(s)
2] = Pv(s)−1R(G + sC)Pv(s)

diag[λi(s)
2] = Pc(s)

−1(G + sC)RPc(s)

}
(2)

where we can choose one of Pc(s)’s in the following relations:

Pc(s) = R−1Pv(s)Γ(s),
Pc(s) = (G + sC)Pv(s)Γ(s)−1,
Pc(s)

−1 = Pv(s)T

}
(3)
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for Γ(s) = diag[λi(s)]. Then, the input and output relations
at the near and far ends are described by the impedance
matrix as follows:[

V(0, s)
V(d, s)

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

][
I(0, s)
−I(d, s)

]
(4)

where

Z11(s) = Z22(s) = Pv(s)diag[cothλi(s)d]Pc(s)
−1

Z12(s) = Z21(s) = Pv(s)diag[sinhλi(s)d]−1Pc(s)
−1 (5)

Observe that all the poles of impedance matrix are found at
the locations satisfying sinh λi(s)d = 0. Thus, we have the
following theorem for the calculation of poles.
Theorem 1: The locations of poles satisfying relations (5)
are found by solving the following equation:∣∣∣∣R(G + sC) +

(
nπ

d

)2

I

∣∣∣∣ = 0, n = 0, 1, 2, . . . (6)

where d is the length of the interconnect.
Proof In the case of n �= 0, we have from (5) that the poles
satisfy the following relation:

|Pc(s)diag[sinhλi(s)d]Pv(s)−1| = 0 (7)

and
|Pc(s)diag[tanh λi(s)d]Pv(s)−1| = 0 (8)

Since Pv(s) and Pc(s) are nonsingular for the nonzero eigen-
values, the poles satisfying the above two relations are given
by

sinh λi(s)d = 0, i = 1, 2, . . . , N (9)

where N shows a number of the multi-conductors. Namely,
we have

λi(s)d = jnπ, i = 1, 2, . . . , N, n = 1, 2, . . . (10)

Therefore, the characteristic equation obtained from (2)
needs to satisfy the relations (6). On the other hand, we
have from (2) that the zero eigenvalue satisfies |G+sC| = 0,
which corresponds to n = 0 in (6).

Q.E.D.
Theorem 2: Let R, C and G be positive definite symmet-
ric matrices. Then, all the poles of RCG interconnect are
located on the negative real axis.
Proof The poles satisfying relation (6) are given by∣∣∣∣(G + sC) +

(
nπ

d

)2

R−1

∣∣∣∣ = 0, n = 0, 1, 2, . . . (11)

For simplicity, we will rewrite the matrix given by (11) as
follows:

|sC + Hn| = 0, where Hn =
(

nπ

d

)2

R−1 + G (12)

Observe that Hn is still a positive definite symmetric matrix.
Thus, it can be transformed into the following diagonal form:

SQT (Hn + sC)QS = SQT HnQS + sI = 0 (13)

with an orthogonal matrix Q and S = diag[Cii]
− 1

2 , where
Cii, i = 1, . . . , N are the eigenvalues of C. Here, SQT HnQS
is a positive real symmetric matrix, so that all the poles

satisfying (13) are negative real numbers.
Q.E.D.

Now, consider the numerical technique for calculating the
poles satisfying (6). Let us rewrite (11) in the following
form;

|sI −A| = 0 (14)

where

A = −(RC)−1

((
nπ

d

)2

I + RG

)
(15)

The relation (14) corresponds to the characteristic equation
of a matrix A. Then, we can apply the Bocher formula as
follows:
Bocher formular [13]: For an n × n matrix A, set

|sI− A| = α0 + sα1 + · · · + sn−1αn−1 + sn = 0 (16)

Then, α0, α1, . . . , αn−1 are given by

αn−1 = −trace(A)

αn−2 = −1

2

[
αn−1trace(A) + trace(A2)

]
..........................................

α0 = − 1

n

[
α1trace(A) + α2trace(A2) + · · ·
+αn−1trace(An−1) + trace(An)

]




(17)

Thus, the poles satisfying algebraic equation (16) can be
calculated by the application of standard numerical meth-
ods for solving the algebraic equation such as Bairstow al-
gorithm.

Now, if we can estimate the residues corresponding to the
poles, the impedance matrix given by (5) can be described
by the partial fractions as follows:

Z11,ij(s) = Z22,ij(s) =
k0,ij

s + p0
+

k1,ij

s + p1
+

k2,ij

s + p2
+

k3,ij

s + p3
+· · ·

(18.1)

Z12,ij(s) = Z21,ij(s) =
k0,ij

s + p0
− k1,ij

s + p1
+

k2,ij

s + p2
− k3,ij

s + p3
+· · ·

(18.2)
for i, j = 1, 2, . . . , N . The residues can be calculated by
the least squares method in such manner that the frequency
responses of (18) are well approximated by those of the
impedance matrices (5).

3. Large scale RCG interconnects

Now, let us discuss the reduction algorithm of a large scale
RCG interconnect and the asymptotic equivalent circuit
model. To understand our algorithm, we consider an exam-
ple of N coupled interconnect whose parameters are given
as follows:[

Ri,i = 5Ω/µm, Ri,i−1 = Ri,i+1 = 1Ω/µm,
Ri,i−2 = Ri,i+2 = 0.1Ω/µm,

i = 1, 2, . . . , N, Other elements of R are zeros

]

(19.1)[
Gi,i = 10mS/µm, Gi,i−1 = Gi,i+1 = −1mS/µm,
Gi,i−2 = Gi,i+2 = −0.1mS/µm

i = 1, 2, . . . , N, Other elements of G are zeros

]

(19.2)[
Ci,i = 6.28fF/µm, Ci,i−1 = Ci,i+1 = −0.49fF/µm,
Ci,i−2 = Ci,i+2 = −0.03fF/µm

i = 1, 2, . . . , N, Other elements of C are zeros

]

(19.3)

III-491



We also assume the length d = 5 µm. We first calculate
the poles using the relation (6), and have gotten the tables
3.1, 3.2 and 3.3, where we have neglected the poles with the
value less than −400, because the poles far from the origin
will have only small effects to the transient response.

Table 3.1 Poles for N = 1 (|pmax| < 400)
No. n=0 n=1 n=2 n=3 n=4 n=5
1 -1.592 -14.17 -51.88 -114.8 -202.8 -315.9

Table 3.2 Poles for N = 2 (|pmax| < 400)

No. n=0 n=1 n=2 n=3 n=4 n=5
1 -1.554 -12.92 -47.01 -103.8 -183.4 -285.7
2 -1.625 -16.20 -59.94 -132.8 -234.9 -366.1

Table 3.3 Poles for N = 10 (|pmax| < 400)
No. n=0 n=1 n=2 n=3 n=4 n=5
1 -1.496 -12.02 -43.61 -96.25 -169.9 -256.5
2 -1.515 -12.25 -44.45 -98.12 -173.3 -261.4
3 -1.542 -12.65 -45.96 -101.5 -179.2 -279.2
4 -1.570 -13.24 -48.25 -106.6 -188.3 -293.3
5 -1.595 -14.04 -51.36 -113.6 -200.7 -312.6
6 -1.615 -15.01 -55.18 -122.1 -215.9 -336.4
7 -1.628 -16.08 -59.42 -131.7 -232.8 -362.9
8 -1.635 -17.12 -63.58 -141.0 -249.4 -388.8
9 -1.638 -18.00 -67.07 -148.9 -263.4 -394.9
10 -1.639 -18.57 -69.38 -154.1 -272.6 -425.0

where N = 1, 2, 10 means single line, 2-coupled and 10-
coupled interconnects, respectively. It is remarkable that
the number of poles for N-coupled interconnect is given by
N × (M + 1) if we consider up to n = 0, 1, . . . , M in (6).
Therefore, the number rapidly increases as M and N , and
the resulting asymptotic equivalent circuit of the intercon-
nect will become very complicate and large scale network if
we consider all the N × (M + 1) poles.

We found from the tables that the poles for N = 1 are
always located around the center position for every nth pole
group; i.e. between No.1 and No.2 for N = 2 as shown
by the table 3.2, and between No.5 and No.6 for N = 10
as shown by the table 3.3, respectively. Hence, we always
assume the 6 poles of N = 1 given by the table 3.1 in our
reduction algorithm as the approximate representative poles
in all the cases of N even if N = 100, 1000 or more.
In this case, each element given by (5) can be written with
the 6 terms in the following form;

Zkl,ij =
k1,kl,ij

s + 1.592
+

k2,kl,ij

s + 14.17
+

k3,kl,ij

s + 51.88
+

k4,kl,ij

s + 114.8

+
k5,kl,ij

s + 202.8
+

k6,kl,ij

s + 315.9
(20)

for k, l = 1, 2, i, j = 1, 2, . . . , N .
Now, let us calculate the residues k1,kl,ij, . . . , k6,kl,ij by the
application of the least squares method, in such a manner
that the errors between the frequency response curve from
the impedance matrix given by (5) and the response curve
satisfying (20) become the smallest in the frequency of in-
teresting. The frequency response curves using the 6 poles
are shown in Fig.1 (a) and (b). They are good agreement
in each other. We also found from the numerical results
that the value of residues far from the diagonal elements in
Zij , i, j = 1, 2 become smaller and smaller.
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Fig.1: Least squares method with 6 poles (a) Z11,11, (b) Z12,11

Therefore, it is enough to choose only few elements around
the diagonal element in each row as the dominant elements.
Hence, each sub-matrix in (5) can be written as follows:

Zij(s) �




Zij,11 Zij,12 Zij,13 Zij,14 0 0
Zij,21 Zij,22 Zij,23 Zij,24 Zij,25 0
Zij,31 Zij,32 Zij,33 Zij,34 Zij,35 Zij,36

Zij,41 Zij,42 Zij,43 Zij,44 Zij,45 Zij,46

0 Zij,52 Zij,53 Zij,54 Zij,55 Zij,56

0 0 Zij,63 Zij,64 Zij,65 Zij,66

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Zij,47 0 0 0 0
Zij,57 Zij,58 0 0 0
Zij,67 Zij,68 Zij,69 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 Zij,NN−3 Zij,NN−2 Zij,NN−1 Zij,NN




(21)
for i, j = 1, 2. Furthermore, we have approximately the
following relations:[

Zij,11 ≈ · · · ≈ Zij,NN , for diagonal elements
Zij,kk+1 ≈ Zij,kk−1, Zij,kk+2 ≈ Zij,kk−2,
Zij,kk+3 ≈ Zij,kk−3, for nonzeo kth terms

]
(22)

Now, consider the asymptotic equivalent circuit model of (4)
as shown in Fig.2.1(a). Using the relations (22), the terminal
voltages at the near and far ends can be written as follows:

Vk(0, s) ≈ Z11,kkIk(0, s)
+Z11,kk+1 (Ik−1(0, s) + Ik+1(0, s))
+Z11,kk+2 (Ik−2(0, s) + Ik+2(0, s))
+Z11,kk+3 (Ik−3(0, s) + Ik+3(0, s))
+Z12,kkIk(d, s)
+Z12,kk+1 (Ik−1(d, s) + Ik+1(d, s))
+Z12,kk+2 (Ik−2(d, s) + Ik+2(d, s))
+Z12,kk+3 (Ik−3(d, s) + Ik+3(d, s))

(23.1)

Vk(d, s) ≈ Z12,kkIk(0, s)
+Z12,kk+1 (Ik−1(0, s) + Ik+1(0, s))
+Z12,kk+2 (Ik−2(0, s) + Ik+2(0, s))
+Z12,kk+3 (Ik−3(0, s) + Ik+3(0, s))
+Z11,kkIk(d, s)
+Z11,kk+1 (Ik−1(d, s) + Ik+1(d, s))
+Z11,kk+2 (Ik−2(d, s) + Ik+2(d, s))
+Z11,kk+3 (Ik−3(d, s) + Ik+3(d, s))

(23.2)

k = 1, 2, . . . , N Z11,kk in the first term of (23.1) and
the 5th term of (23.2) correspond to the self impedance
Z11, Z22, . . . , ZNN shown in Fig.2.1 (b) and Fig.2.2(b).
Other terms consist of the current controlled voltage sources
as shown Fig.2.2(a).
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(b) SPICE model of interconnect
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Fig.2.1: SPICE model of multi-conductor interconnect
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Fig.2.2: (a) Current controlled voltage source, (b)
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4. Illustrative examples

Consider a fulladder circuit coupled with interconnects as
shown in Fig.3(a).

S

C
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T3
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T6

T1

Half Adder 2Half Adder 1

V1 V2 V3

Fig.3(a): Fulladder coupled with interconnects

d = 20 µm
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Fig.3(b): Transient response of the fulladder circuit.
The solid lines show the responses with interconnects,

and the dotted lines the responses without the interconnects

The transient responses at the output stages are shown by
solid lines in Fig.3(b), where the dotted lines show the re-

sponses without the interconnects. Observe that the re-
sponse coupled with interconnects has the complicated re-
sponse due to the time-delays, crosstalks, reflections and so
on.

5. Conclusions and remarks

We proposed a reduction algorithm for large scale RCG in-
terconnects, where they are replaced by simple asymptotic
equivalent circuits with current controlled voltage sources.
The reduction rate will be very large especially for the large
scale interconnects. Therefore, we can easily get the tran-
sient responses with the SPICE simulator. The algorithm
will be efficiently applied to the large scale circuits such as
gate-arrays coupled with interconnects in the substrate.
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