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1. Introduction

Studies of dynamic phenomena in arrays composed of
oscillatory and chaotic elements are very important in
such investigations as they provide a universal model for
phenomena observed in other domains. From the mid-
dle of previous decade, the investigations of the spatio-
temporal dynamics in cellular neural networks have been
widely carried out, and many papers have been pub-
lished. The obtained sound results are pattern forma-
tions and various forms of autowaves such as excitabil-
ity waves, concentration waves and so on, which have
been observed in many disciplines ranging from biology
to physics and chemistry, etc. Up to the present, the
CNN arrays, which are composed of Chua’s oscillators
[2]-[4], second nonlinear circuit obtained by the suitably
“reducing” Chua’s circuit [5] and etc. [6][7] have been
mainly considered in order to generate these phenom-
ena. A common technique in all these cases is almost
using CNNs to approximate the various types of nonlin-
ear partial differential equations, especial the well-known
reaction-diffusion equations that have shown to generate
Turing pattern and propagation phenomena in various
continuous media.

The purpose of this paper is to investigate another
class of spatio-temporal phenomena occurring in a sim-
pler CNN structure - mutually coupled two-layer CNNs.
We found that this type of propagation phenomena has
the properties of reflection, permeation, superposition
and etc., which are completely different from those non-
linear propagation phenomena. In particular, the condi-
tions for generating the classical wave will be discussed.

2. Two-Layer CNNs

Firstly, let us recall simply the mutually coupled two-
layer CNNs [7]-[9], which are described based on the well-
known Chua-Yang’s CNNs [1]. The system equations are

formulated as follows:
dx1,ij

dt = −x1,ij + I1

+
∑

C(k,l)∈Nr(i,j) A1(i, j; k, l)y1,kl

+
∑

C(k,l)∈Nr(i,j) B1(i, j; k, l)u1,kl

+
∑

C(k,l)∈Nr(i,j) C1(i, j; k, l)y2,kl
dx2,ij

dt = −x2,ij + I2

+
∑

C(k,l)∈Nr(i,j) A2(i, j; k, l)y2,kl

+
∑

C(k,l)∈Nr(i,j) B2(i, j; k, l)u2,kl

+
∑

C(k,l)∈Nr(i,j) C2(i, j; k, l)y1,kl




(1)

y1,ij = 0.5(|x1,ij + 1| − |x1,ij − 1|)
y2,ij = 0.5(|x2,ij + 1| − |x2,ij − 1|)

}
(2)

where (i, j) stands for the position of a cell in the array,
for 1 ≤ i ≤ M and 1 ≤ j ≤ N , and the subscript 1 and
2 stand for first layer and second layer of the two-layer
CNN array. The CNNs are efficient for image processing
applications such as center point detection, skeletoniza-
tion and etc., which have been reported in our previous
studies [7][8]. In the following paragraph, we will inves-
tigate the spatio-temporal phenomena in the two-layer
CNNs.

3. Investigation of Classical Wave Propagation

We had shown that the two-layer CNNs could repro-
duce the pattern formation and active propagation phe-
nomena in reference 9, in which there is a common prop-
erty that at least one of temporal eigenvalues of two-layer
CNNs has positive real part, even if the property is also
for image processing applications of the CNNs. However,
when all of the temporal eigenvalues have zero or nega-
tive real parts, what will be taken place in the CNNs?
This work will be discussed in this section.

3.1. Necessary Condition

Let us consider an autonomous two-layer CNN with
mutual couple between layers. Its equation is described



as the following form:

ẋ1,ij = −x1,ij + (a1 + 1)y1,ij + c1y2,ij

+d1∇2y2,ij

ẋ2,ij = −x2,ij + (a2 + 1)y2,ij + c2y1,ij

+d2∇2y1,ij .




(3)

Where a1,a2,c1,c2,d1 and d2 are parameters. By expand-
ing the Laplacian operator in discrete form, and com-
paring with Eq.(1), the two-layer CNN has the following
template:

A1 = a1 + 1, C1 =


 0 d1 0

d1 −4d1 + c1 d1

0 d1 0


 ,

A2 = a2 + 1, C2 =


 0 d2 0

d2 −4d2 + c2 d2

0 d2 0


 ,

B1 = 0, B2 = 0, I1 = 0, I2 = 0. (4)

On the other hand, the Laplacian operator in Eq.(3) acts
on the output variables instead of the state variables,
and the each output cell is a piecewise-linear nonlinear
function of the cell state. If we assume that all initial
states of the system at the beginning are always in the
linear region, then the Eq.(3) can be written as follows:

ẋ1,ij = a1x1,ij + c1x2,ij + d1∇2x2,ij

ẋ2,ij = a2x2,ij + c2x1,ij + d2∇2x1,ij .

}
(5)

where x1;ij , x2;ij are in linear region, and 1 ≤ i ≤ M ,
1 ≤ j ≤ N .

Thus, the above linear differential equation can be
solved by decoupling it into MN -decoupled systems of
two first-order linear differential equations, and consid-
ering that the MN orthonormal space-dependent eigen-
function φMN (m,n; i, j) of the discrete Laplacian oper-
ator can be assumed as follows for most boundary con-
ditions:

∇2φMN (m,n; i, j) = −k2
MNφMN (m,n; i, j) (6)

where M and N are the CNN dimensions, m and n are
the summation indexes for the current space variables i
and j (i = 0, 1, · · · , M − 1; j = 0, 1, · · · , N − 1), and k2

mn

are the corresponding spatial eigenvalues. In particular,
for the zero-flux boundary condition, the spatial eigen-
function and eigenvalue can be assumed as the following
form:

∇2φMN (m,n; i, j)=cos
(2i+1)mπ

2M
cos

(2j+1)nπ

2N
(7)

and
k2

mn = 4(sin2 mπ

2M
+ sin2 nπ

2N
) (8)

Then, the expected solution of the Eq.(5) can be ex-
pressed as a weighted sum of M × N orthogonal space
dependent eigenfunctions φMN (m,n; i, j) in the follow-
ing form:

x1,ij(t)=
M−1∑
m=0

N−1∑
n=0

(αmne
λmn1t+βmne

λmn2t)φMN(m,n;i,j)

x2,ij(t)=
M−1∑
m=0

N−1∑
n=0

(γmne
λmn1t+δmne

λmn2t)φMN(m,n;i,j)




(9)

where αmn, βmn, γmn, δmn are constants depending on
the initial conditions. λmn1, λmn2 are the roots of the
following characteristic Eq.(10), which are influenced by
spatial eigenvalue k2

mn corresponding to spatial eigen-
function.

det
∣∣∣∣λmn

[
1 0
0 1

]
−

[
a1 c1−k2

mnd1

c2−k2
mnd1 a2

]∣∣∣∣ = 0 (10)

and

λmn[k2
mn] =

1
2

[(a1 + a2)±
√

(a1 − a2)2 + 4(k2
mnd2 − c2)(k2

mnd1 − c1)
]

(11)

The equation (9) is important because the cell states
of the two-layer CNN are given as the time-dependent
weighted sums of spatial eigenfunctions. From this equa-
tion, it can be derived that, if one of the temporal eigen-
values has positive real part, the two-layer CNN becomes
unstable in this linear region, and the cell states do arise
and enter into the nonlinear region (i.e., saturation re-
gion or partial saturation region). In this situation, the
two-layer CNNs can be used for modeling active me-
dia for nonlinear phenomena such as pattern formations
and autowaves [7], and for image processing applications.
However, if all of temporal eigenvalues have zero or neg-
ative real part, the all of states of the CNN are in linear
region. Thus, the CNNs have the properties of the linear
space, such as superposition etc. Therefore, we can use
this CNN to model passive media with non-loss or loss
in linear space.

3.2. Classical Wave Propagation

In this subsection, the investigations on passive prop-
agation phenomena with/without loss are carried out in
two-layer CNNs, which enable us to find out some basic
properties of these phenomena. In the following simu-
lation, the CNN array consists of 100 × 100 cells with
zero-flux boundary condition, and the initial state of the
first layer CNN is set as Fig.1(a), and the second layer
is set as zero initial state. If the parameter set: a1 = 0,



a2 = 0, d1 = −0.5, d2 = 0.5, c1 = −5, and c2 = 5 is se-
lected, from Eq.(11) we have that all of temporal eigen-
values of the CNN are complex numbers with zero real
part and the isolated cell without couple behaves as os-
cillator with limited cycle. In other words, the two-layer
CNN is a system without loss. This type of two-layer
CNN can be used for modeling passive media without
loss. Fig.1 shows the simulation result. Analysis of the
simulation result shows that circular waves propagating
from the initialized position are generated. These circu-
lar waves propagate in all directions through the plane
array and their amplitudes decrease with propagating.
When the waves collide with each other, they don’t dis-
appear and reflect, but permeate through and superpose
on each other. When they collide with the boundary,
the waves are reflected. Moreover, after the waves are
repeatedly reflected and superposed, the initialized posi-
tions become invisible. These behaviors behave those the
classical wave does. The wave propagation phenomenon
keeps up forever duo to zero real parts of temporal eigen-
values. This dynamic process can be observed from the
graph of the sum of State-error Square varying with the
integration time shown by Fig.8. The sum of State-error
Square is defined as:

SCNN(t) =
M∑
i=1

N∑
j=1

((x1,ij(t + ∆t) − x1,ij(t))2

+(x2,ij(t + ∆t) − x2,ij(t))2) (12)

From the graph, we can see that the sum of State-error
Square converges on a horizontal line. On the other
hand, if we select the parameter set to satisfy all tem-
poral eigenvalues of the CNN having negative real parts,
then the CNN is a damped system, each cell state will
decay to zero, which can be derived from Eq.(9). This
situation is suitable for model passive media with loss.
For example, if the parameter set as a1 = −0.04, a2 = 0,
d1 = −0.5, d2 = 0.5, c1 = −5, and c2 = 5 is selected,
then all of temporal eigenvalues of the CNN are com-
plex numbers with negative real part and the isolated
cell without couple behaves damped oscillator. The sim-
ulation result is shown by Fig.3. From the analysis of the
simulation result, we can see that the propagation phe-
nomenon has the same properties with the above one.
However, the network is calm in the finals due to the
temporal eigenvalues having negative real part. The dy-
namic process can be similarly demonstrated from the
graph of sum of State-Error Square shown by Fig.4.

4. Conclusions

In this paper, we have investigated the spatio-
temporal phenomena in the two-layer CNNs, and found

the necessary condition for these phenomena. We can
use the two-layer CNN to approximate the passive me-
dia as well. Based on our research results, the two-layer
CNN can be considered not only for modeling active me-
dia, but also for modeling passive media with/without
loss. All of these facts show that the two-layer CNNs
have a real potential for expansion.
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Figure 1: A simulation for classical wave propagation
without loss. (a) is initial state, (b)-(d) show three snap-
shots observed in different iterates.

Figure 2: Graph of sum of state-error square via time
for classical wave propagation without loss.
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Figure 3: A simulation for classical wave propagation
with loss. (a) is initial state, (b) (c) and (d) show four
snapshots observed in different iterates.

Figure 4: Graph of sum of state-error square via time
for classical wave propagation with loss.
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