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1. Introduction

Dynamic property of networks of oscillatory and
chaotic elements is one of the very lively studied top-
ics. Many papers of international conferences and jour-
nals are devoted uniquely to studies of spatially extended
systems, active media, and coupled lattices showing im-
portant areas where studies of dynamic phenomena in
coupled oscillators find potential applications. Since Cel-
lular Neural Networks (CNNs) were invented in 1988
[1], the CNN paradigm provides a flexible framework
(or universal model) to describe spatio-temporal dynam-
ics in discrete space and - perhaps more importantly
from a practical point of view - allows for efficient VLSI
implementation of analogue, array-computing structure.
Many nonlinear phenomena such as pattern formation,
autowaves and etc, which come from many disciplines
ranging from biology to physics and chemistry, have been
reproduced in the CNNs, and the related literatures have
been reported [8]-[11].

On the other hand, a lot of studies on phase relation-
ship of mutually coupled oscillators or chaotic circuits
have been widely carried out. Endo and Mori [2]-[4] have
studied van der Pol oscillators as a ladder, ring or two-
dimensional array, and confirmed that several modes of
synchronization. We have also discovered very interest-
ing wave propagation phenomena of phase-difference in
van der Pol oscillators coupled by inductors as a ladder
[5]. Unfortunately, the basic circuits of the above mod-
els contain inductive and high-order nonlinearly resistive
devices resulting in circuit sophistication, so that it is not
suitable to develop the implementation of the large-scale
arrays of these circuits. In this paper, we will investi-
gate these dynamic behaviors encountered in a simpler
circuit structure. This structure is one-dimensional ar-
ray of two-layer CNN cells, in which there exists resis-
tive couple between cells and each cell has a well-known
piecewise-linear nonlinear output function at the output

stage. Depending on the application of couple coeffi-
cients between cells, the initial conditions of cells and
the boundary conditions imposed on the array, we ob-
served that many kinds of very interesting propagation
phenomena of phase difference, such as synchronization,
phase-wave and phase-inversion-wave, can be regener-
ated in the one-dimensional two-layer CNN array.

2. One-Dimensional Two-Layer CNN Array

In this section, we describe the circuit array used
for investigating the propagation phenomena of phase
differences between adjacent cells. This array is a
one-dimensional two-layer CNN with constant template,
with circuit topology simpler than those reported in liter-
atures [2]-[5], which is developed from the original Chua-
Yang CNNs. In other words, the array consists of the
cells of two-layer CNN with resistive couple. The state
equation of each cell is defined as follows:

ẋ1;i = −x1;i + A1 ∗ y1;i + B1 ∗ u1;i + C1 ∗ y2;i + I1

ẋ2;i = −x2;i + A2 ∗ y2;i + B2 ∗ u2;i + C2 ∗ y1;i + I2

}

(1)
with output equation

y1;i = 0.5(|x1;i + 1| − |x1;i − 1|)
y2;i = 0.5(|x2;i + 1| − |x2;i − 1|)

}
(2)

i = 1, 2, ..., N.

where A, B, C, and I are respectively the feedback tem-
plate, control template, coupled template, and bias cur-
rent, and the subscript 1 and 2 stand for first layer and
second layer of the two-layer CNN array. In this pa-
per, we restrict our discussions to the following form of
template.

A1 =
[

d1 a1 d1

]
, C1 =

[
0 c1 0

]
,

A2 =
[

d2 a2 d2

]
, C2 =

[
0 c2 0

]
,

B1 = B2 = 0, I1 = I2 = 0. (3)
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Figure 1: (a) Phase portrait in the x1;i–x2;i plane of the
limit cycle of the isolated two-layer CNN Cell. (b) Time
evolution of x1;i and x2;i.

It has been proved [6][7] that for a particular choice its
parameters a1, a2, c1, and c2, this nonlinear second-order
cell in absence of couple to its neighbor cells oscillates
with a limit cycle centered to the origin and symmetric
with respect to the phase plane axis, which is shown in
Fig. 1 by adopting a1 = 1.6, a2 = 0.7, c1 = −2, and
c2 = 4.

3. Phase-Wave Propagation Phenomena

3.1. Phase-Waves

The phase-waves were firstly introduced in literature
[5], which are observed from the changes of phase dif-
ference between adjacent cells in a ladder composed of
van der Pol oscillators coupled by inductors. The phase
difference is defined as follows:

φi,i+1(n) = 2π × ti(n) − ti+1(n)
ti(n) − ti(n − 1)

(4)

where ti(n) is time when the state x1;i crosses 0[V]
at n-th period. In all of the following Figs.4, 5 and
6, the vertical axes are the sum of the first layer out-
puts of adjacent cell, and the horizontal axes are time.
Hence, the diagrams show qualitatively how phase differ-
ences between adjacent cells change as time goes, where
white regions correspond to the state that two adja-
cent cells/oscillators are anti-phase synchronization, and
black regions to the in-phase synchronization. Figure
4(a) shows wave propagation phenomenon of phase dif-
ferences, which is observed from one-dimensional array,
composed of 14 two-layer CNN cells with zero-flux condi-
tion. The initial condition of the first layer of this array
is set as Fig.3, where the black squares denote cells hav-
ing value 1 and the white squares value −1. The initial
condition of the second layer is zero. The parameter
set: a1 = 1.2, a2 = 1.1, c1 = −2, c2 = 4, d1 = 0.1,
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Figure 2: Definition of phase difference.

and d2 = −0.1 is adopted. Analysis of this simulation
indicates that the anti-phase between adjacent cells is
transferred gradually from one end to the other end of
the CNNs array, and reflected at the end of array. This
transfer process of phase continuously exists in the CNN
array, so called “phase-inversion-wave”. In the following
sections, we investigate the influence of the array bound-
ary conditions, the cell initial states and the coupling
parameters on the phenomena.

x1;1 x1;i x1;14

Figure 3: A initial condition for one-dimensional array
of 14 cells.

Figure 4: Phase-inversion-wave in a one-dimensional ar-
ray of 14 cells.

3.2. Influence of Coupling Parameters

In this section, the influence of coupling parameters
between adjacent cells on the propagation of phase-waves
is investigated in a one-dimensional array composed nine
two-layer CNN cells with zero-flux boundary condition.
The initial state of the first layer of array is shown in



Fig.5, and the second layer initial state is zero. The
parameter set is the same with the last simulation ex-
cept parameters d1 and d2. We respectively carry out
three simulations by adopting parameters d1 = 0.1 and
d2 = −0.1, d1 = 0.15 and d2 = −0.15, and d1 = 0.2
and d2 = −0.2. The simulation results are respectively
shown in Figs.6 (a), (b) and (c). As we have seen, the
propagation speed of phase-wave is directly proportional
to the coupling parameters (coupling conductance) d1

and d2 between adjacent cells.

x1;1 x1;i x1;9

Figure 5: A initial condition for one-dimensional array
of 9 cells.
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Figure 6: Influence of couple parameters on phase-
inversion-wave

3.3. Influence of Initial States

We investigate the influence of different initial states
on the phase-wave propagation in a one-dimensional ar-
ray composed 18 two-layer CNN cells with zero-flux
boundary condition. The parameter set: a1 = 1.1,

x1;1 x1;i x1;18

(a)
x1;1 x1;i x1;18

(b)
x1;1 x1;i x1;18

(c)

Figure 7: Three initial states for one-dimensional array
of 18 cells.

a2 = 1.1, c1 = −3, c2 = 5, d1 = −0.03, and d2 = 0.03
is adopted. Figure 7 shows three different initial condi-
tions. We obtain three different patterns of wave prop-
agation phenomena shown in Fig.8. The analysis of the
simulation indicates that the wave reflections take place
at both ends of array or the positions that two phase-
waves collide with each other.

3.4. Influence of Boundary Conditions

In this section, two simulations are carried our to ob-
serve what phenomena arise with adopting two different
boundary conditions – zero-flux and ring in the same
circuit array composed of 14 cells. The parameter set is
the same with the last simulation. Two different phase-
inversion-waves are shown in Fig.9, where (a) is for zero-
flux boundary and (b) is for ring boundary. We found
that the phase-wave don’t be reflected at the both ends
of array, but pass across the boundary and appear from
the opposite side again in the case of ring boundary con-
dition.

4. Conclusions

In this study, we have proposed a simpler circuit struc-
ture – one-dimensional arrays of two-layer CNN cells
for investigating the phase-wave propagation phenom-
ena. We found that the propagation phenomena of
phase-wave, especially phase-inversion-wave, can be re-
produced in the CNN array composed of almost numbers
of cells. Moreover, we have investigated qualitatively the
influences of the coupling parameters, the initial states,
and the boundary conditions on these propagation phe-
nomena. In future works, we will try to find out the
patterns of these dynamics and clarify their mechanism.
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Figure 8: Influence of three kinds of initial conditions on
phase-inversion-wave
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