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Abstract

In this paper, we investigate the solving ability of Hop-
field neural network with iterative simulated anneal-
ing noise for traveling salesman problems (TSPs) and
quadratic assignment problems (QAPs) by comparing
with chaotic noise. From several numerical experiments,
we can confirm that the solving ability of iterative sim-
ulated annealing noise is almost same as chaotic one.
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1. Introduction

One of the key application of Hopfield neural net-
work (H-NN)[1] is combinatorial problems, such as trav-
eling salesman problems (TSPs) and quadratic assign-
ment problems (QAPs). Since there are generally many
local minima in such problems, the state of the H-NN
is often trapped into these local minima. It remains,
therefore, an unsettled question how to escape easily
from them and reach global minimum. Many meth-
ods to try to overcome this problem have been pro-
posed, for examples, Boltzmann machine|[2], chaotic neu-
ral network[3], simulated annealing (SA)[4], neural net-
work with noise[5] and so on. These methods could
be classified into two categories from their dynamical
behaviors[8]. First category is ‘autonomous method’. In
this method, by modifying the characteristic of dyman-
ics of each neuron to stochastic or chaotic one, then the
network can search every candidate of global minimum
itself. Boltzmann machine and chaos neural network are
included in this category. The other category is ‘nonau-
tonomous method’. By adding noise to each neuron,
the network can avoid to trap the local minima. The
amplitude of noise should be controlled appropriately.
Exmaples in this category are SA, neural network with
noise and so on. Recently, for second category, chaotic
time series which is generated from the logistic map is
paid great attention as a good noise candidates [6, 7].
Hayakawa et al. [6] pointed out that H-NN with the in-
termittent chaos noise near the period-3 window of the
logistic map is more effective for traveling salesman prob-
lem(TSP)s. Ueta et al. [8] mentioned that period-5 and
7 are also effective for TSPs. Uwate et al. [9] tried to
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find the cause of the good performance of chaotic noise
for QAPs. They also indicated that the chaotic noise
could be replaced by the stochastic one whose statistical
characteristic is similar to the chaotic onel6, 7, 8, 9].

On the other hand, there is a general agreement that
SA is effective for escaping local minima. But, in our
previous research, the solving ability of H-NN with sim-
ple SA noise is inferior to H-NN with chaotic one[10].
Then we have developed the H-NN with iterative SA
noise and confirmed that the searching ability of global
minimum of iterative SA noise is almost same as chaotic
one, and searching performance for detecting local min-
ima is superior to chaotic one in the case of some small
TSPs[11]. In this paper, therefore, we investigate the
solving ability of iterative SA noise for larger TSPs and
some QAPs by comparing with the chaotic one. By com-
puting simulations we confirm that the iterative SA noise
is effective and can pick up larger number of local min-
ima than chaotic one in both problems. Thus, we can
say that this is superior property of iterative SA noise
for practical use.

2. H-NN with Noise

The dynamics of the H-NN is given as:

N N
xik(t -+ 1) = f Zzwikjll'jl(t) + eik +e€

j=11=1

(1)

where ¢ is an additional noise. And f is a sigmoidal

Figure 1: Neuron model
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function defined as follows:

1 (1 + tanh f)
2 %
where p is a constant in chaotic noise, but it’s a variable
parameter in SA noise. Fig. 1 shows a conceptual neuron
model for this H-NN. The decision method of neuron’s
state, fire or not, is used the method in [6, 8].

flx)= (2)

2.1. H-NN with Chaotic Noise

For chaotic noise, we generate a time series by the
logistic map:

zie(t+ 1) = azir () (1 — 2zi(1)) (3)

where a is a bifurcating parameter of the logistic map.

Then the dynamics of H-NN with chaotic noise is given
as :

l'ik(t“‘l Zzwzkﬂz]l +01k +6Z1k( ) (4)

Jj=11=1

where (3 is amplitude of noise which is design parameter.
Fig. 2 shows an example of the periodic-3 intermittent
chaotic noise (¢t =1 ~ 1000).
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Figure 2: Time series of periodic-3 intermittent chaos

2.2. H-NN with iterative SA

H-NN with SA is also based on sigmoidal function and
has a noise term (¢) depends on Gaussian distribution

of which mean is 0 and standard deviation is /¢/7T.
Where § is a empirical parameter and 7' is a control
parameter, called temperature, which tends to zero ac-
cording to a diterministic “annealing schedule”.

The value of p which is a parameter of sigmoidal func-
tion is determined by “sharpening schedule”. As the
value of € is closer to 1, neuron’s input-output function is
closer to step function. We employ annealing and sharp-
ening schedules as follows:

—c —c
T = Tyexp [—} , b= [ig €eXp [—} (5)
P p

Table 1: Scheduling parameters for SA noise

[Tteration | To | wo | p |
1 100.0 | 100.0 | 38.0
5 100.0 | 100.0 | 26.7
10 100.0 | 100.0 | 16.0

where Tj is the initial value of temperature and pg is
the initial value of u. And where ¢ is a loop counter and
p is a descent parameter. From former results [10], we
know the solving ability of H-NN with simple SA noise
is not good and inferior to H-NN with chaotic noise. We
consider one of the reasons for this fact is that chaotic
noise is always injected all the simulation time but the
amplitude of SA noise is decreased as the temperature is
reducing. We, therefore, propose the iterative SA-noise
for improving normal SA noise. In the iterative SA noise,
when the temperature becomes zero, it is initialized and
repeated procedure of simulated annealing till terminal
condition is satisfied. Hence, annealing is done more
than twice per one trial. Thus, we call this noise iterative
SA noise. Fig. 3 indicates time serieses of iterative-
10 SA noise, and scheduling parameters of iterative SA
noise are shown in Table 1.
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Figure 3: Time serieses of iterative-10 SA noises

3. Simulation results and discussion

3.1. Results of TSP

For solving N-city TSP, N x N neurons are required
and the following energy function is defined to fire (i, 7)
neuron at the optimal position:

E:E Wi ko, j, 1T jTk, L — E 0;,ji,j

i, k,l

(6)

where wj ;1 is a weight coefficient between (¢,7) and
(k,1) neurons. They are defined as

—A{0; (1 = 0k) + 0ra(1 = 6; )}
*Béi’j(517k+1 + (sl,k:—l) (7)

where A > 0, B > 0, J; ; is Kroneker’s delta and 6; ; :=
A+ B is the threshold value.

Wikjl =
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Figure 4: 10-city and 22-city TSPs

Although detection for the global mimimum is impor-
tant for solving TSP, it should be added that how many
minima are detected within a reasonable trial time is
also important, because the dynamics of this H-NN with
noise is nonautonomous and the network is not converge
to the local minima and global minimum. We, therefore,
use two performance criterion for investigating the solv-
ing abilities of H-NN with iterative SA noise and choatic
one as follows:

number of success trials

x 100 (%) (8)

total trial number

average number of detected local minima
(9)

where ”success trials” means the trial that could detect
global minimum. One trial is defined as 1000 times of
transfer of every neurons’ input-output signal and total
trial number is 100. We investigate solving abilities of
above mentiond two type of noise for TSPs indicated in
fig. 4 from the points of the two performance criteria
mentiond above eqgs. (8) and (9). The values of param-
eters for chaotic noise, a and g in eqgs. (3) and (4), are
tuned as shown in table 2. The initial values of all neu-
rons and noises are chosen at random, and the value of
parameters of energy function are tuned adequetly ac-
cording to simulation conditions.

Table 2: Values of parameters for chaotic noise
City Periodic

Parameters
number number
7 a =3.7001,38 =0.47
10 5 a=3.7379,8 = 0.47
3 a = 3.8250,3 = 0.47
7 a=3.7001,8 =0.47
22 5 a=3.7379,3 = 0.45
3 a = 3.8252,3 = 0.42

Table 3 shows the best solving abilities of H-NN with
iterative SA noise and H-NN with chaotic noise respec-
tively. From table 3, we can see that solving abilities
of iterative-5 and 10 SA noise are more effective than
iterative-1 SA noise which is a normal SA method in
both performace criteria, v and 0. When we compare

the performance between SA noise and chaotic one, we
see that performance about v between iterative SA noise
and chaotic one are almost same. On the other hand,
values of o are different between chaotic and iterative
SA noises. Iterative SA noise can pick up local minima
more than chaotic one. We can say that this is superior
property of iterative SA noise for practical use.

Table 3: Results of TSP

City iterative SA noise Chaotic noise

No. |[Ttera. [y ) | o Period. [y () | o
10 89 14.0 7 84 7.5

10 ) 86 10.2 5 81 8.8
1 62 6.4 3 91 13.1
10 47 8.2 7 60 8.3

22 5 49 8.6 5 53 8.8
1 20 4.3 3 50 10.3

3.2. Results of QAP

Results of QAP In this section, simulation results of
QAP are shown. The QAP is one of the most difficult
combinatorial problem and it is to find the permutation
vector p which minimize the objective function f(p) un-
der given distance matrix C' and flow matrix D. The
objective function of QAP is defined as

N N
@) = D2 CiiDpiypi)

i=1 j=1

(10)

where C; ; and D; ; are the (4, j)-th elements of C' and
D respectively, and p(i) is the ¢ th element of p.

The QAP’s energy function for H-NN could be ex-
pressed as TSP’s, eq. (6), the weight, w; i j, is a bit
different. It’s described as

Ci,i Dk,

q

(11)
where A > 0, B > 0 and ¢ > 0 are constants, and 6; ;
is Kroneker’s delta. And where 6; ; :== A + B is the
threshold value. Two problems, “Nugh” and “Nugl2”,
are chosen here from QAPLIB[12].

Wi ko jl = —2 A(Si’j(l - 5k,l) + Bék,l(l — 51',]‘) +

1. [Nug 5]
0 4 3 5 2
4 0 6 2 1
Cc = 36 05 7
5 2 5 0 3
21 7 30
0 3 1 2 4
3 0 2 1 4
D = 1 2 0 5 3
21 5 01
4 4 3 10

The global optimum is known as 158.
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2. [Nug 12]
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The global optimum is known as 578.

In these problems, we do not only use v but Av which
means the average value of every minimum costs found
in trials[9]. The results of H-NN with iterative SA noise
are summarized in Table 4. The results of H-NN with
the periodic-3 intermittent chaos noise (a = 3.8276) are
also shown for comparison.

Table 4: Results of QAP

Nug iterative SA noise Chaotic noise
No. [ Itera. [ v (o) [ Av [[v (W) ] Av
10 70 159.2
5 5 62 160.6 72 158.9
1 8 198.3
10 6 597.3
12 5 3 609.9 3 612.0
1 0 -

From table 4, we can also say that solving abilities
of iterative-5 and 10 SA noise are more effective than
iterative-1. From comparison with the chaotic noise, the
performance of iterative SA noise and chaotic one are al-
most same. But, it is remains the room for improvement
of solving ability of iterative SA noise. We need to find
a suitable parameter set of energy function for iterative
SA noise. To settle this difficulty is a future problem.

4. Conclusion

In this paper, we propose the H-NN with iterative SA
noise and investigate the solving abilities of this H-NN
for TSPs and QAPs. Then we confirm that H-NN with
iterative SA noise is as effective as H-NN with chaotic
noise in these combinatorial problems. As future works,
suitable parameter set of energy function for iterative
SA noise is required to find. In addition to this we need
to analyze the solving abilities of iterative SA noise and
chaotic one with a theoretical approach.
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