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Abstract— Solving combinatorial optimization
problems is one of the important applications of the
neural network. Many researchers have reported that
exploiting chaos achieves good solving ability. How-
ever, the reason of the good effect of chaos has not
been clarified yet.

In this article, intermittent chaos noise near three-
periodic window and burst noise generated by the
Gilbert model are applied to the Hopfield neural net-
work for quadratic assignment problem. By computer
simulations we confirm that the burst noise generated
by the Gilbert model is effective to solve the quadratic
assignment problem and we can say that the existence
of the laminar part and the burst part is one reason of
the good performance of the Hopfield NN with chaos
noise.

I. Introduction

Solving combinatorial optimization problem is one
of the important applications of the neural network
(abbr. NN). Recently many researchers suggested that
chaotic noise is more effective than stochastic one for
solving the traveling salesman problem (abbr. TSP)
with the Hopfield NN [1]. Hayakawa and Sawada
pointed out that intermittent chaos near the three-
periodic window of the logistic map gains the best
performance [2]. They concluded that the good result
might be obtained by some properties of the chaotic
noise; short time correlations of the time-sequence.
Hasegawa et al. investigated solving abilities of the
Hopfield NN with various surrogate noise, and they
concluded that the effects of the chaotic sequence
for solving optimization problems can be replaced by
stochastic noise with similar autocorrelation [3]. In or-
der to understand the reason of the good performance
of the Hopfield NN with chaotic noise, we investigated
their solving abilities with the burst noise generated by
the Gilbert model [4] for several kinds of the traveling
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salesman problem [5]-[7].

In this article, intermittent chaos noise near three-
periodic window and burst noise generated by the
Gilbert model are applied to the Hopfield NN for
quadratic assignment problem (abbr. QAP) said to be
much more difficult to solve than TSP. By computer
simulations we confirm that the burst noise generated
by the Gilbert model is also effective to solve QAP and
we can say that the existence of the laminar part and
the burst part is one reason of the good performance
of the Hopfield NN with chaotic noise.

II. Solving QAP with Hopfield NN

Various methods are proposed for solving the QAP
which is one of the NP-hard combinatorial optimiza-
tion problems. The QAP is expressed as follow: given
two matrices, distance matrix C' and flow matrix D,
and find the permutation p which corresponds to the
minimum value of the objective function f(p) in Eq.

1).
(1) ..
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where C;; and D,; are the (4, j)-th elements of C and
D, respectively, p(i) is the i th element of vector p,
and N is the size of the problem. There are many real
applications which are formulated by Eq. (1). One
example of QAP is to find an arrangement of the fac-
tories to make a cost the minimum. The cost is given
by the distance between the cities and the flow of the
products between the factories (Fig. 1). Other exam-
ples are the placement of logical modules in a IC chip,
the distribution of medical services in large hospital.
Because the QAP is very difficult, it is almost im-
possible to solve the optimum solutions in larger prob-
lems. The largest problem which is solved by deter-
ministic methods may be only 20 in recent study. Fur-
ther, computation time is very long to obtain the exact
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Figure 1: QAP model.

optimum solutions. Therefore, it is usual to develop
heuristic methods which search near optimal solutions
in reasonable time.

For solving N-element QAP by Hopfield NN, N xN
neurons are required and the following energy func-
tion is defined to fire (7, j)-th neuron at the optimal
position:

N
-y
i,m=1

The neurons are coupled each other with the synap-
tic connection weight. Suppose that the weight be-
tween (¢,m)-th neuron and (j,n)-th neuron and the
threshold of the (¢, m)-th neuron are described by:

N N
Z Wim;inTimTjn + Z OimTim - (2)
=1

7,n i,m=1

Wim;jn =

_Z{A(l - 6mn)6ij
+B6,n (1= 6;;) + ]q} 3)

eim =

where A and B are positive constant, and §,; is Kro-
necker’s delta. The state of NxN neurons are un-
synchronously updated due to the following difference
equation:

A+ B

N
Tim(t+1)=F | D WimgnTim (£);0(t)

j,mn=1 (4)
_gim + ﬁzim (t)>
where f is sigmoidal function defined as follows:
1
f@) = ———F—=~ (5)
1+ exp (——>
€

Zim 18 additional noise, and 3 limits amplitude of the
noise. Figure 2 shows a conceptual neuron model for
this NN.
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Figure 2: A neuron model.

ITII. Chaotic and Burst Noises

In this section, we describe two kinds of noise injected
to the Hopfield NN.

At first, the logistic map is used to generate chaotic
noise:

Zim(t 4+ 1) = azim(£)(1 — zim(1))- (6)

Varying parameter o, Eq. (6) behaves chaotically via
a period-doubling cascade. We use intermittent chaos
near the three-periodic window obtained from Eq. (6),
because in some literatures such chaotic bursts are
confirmed to be more effective than fully developed
chaotic sequence.

Figure 3 shows the time series of the intermit-
tent chaos noise near the three-periodic window. In
this figure, the amplitude of this sequence is normal-
ized by the average and the standard deviation from
the original chaotic burst obtained from Eq. (6) with
a=3.8268.
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Figure 3: Intermittent chaos noise near three-periodic
window. a=3.8268.
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A. Burst Noise

In order to simulate the chaotic bursts by stochastic
noise, we use the two-state Gilbert model as shown in
Fig. 4. Gilbert model is sometimes used for charac-
terizing error-generating mechanisms in digital com-
munication channels. One state corresponds to the
burst part and generates uniformly distributed noise,
while the other corresponds to the laminar part and
generates three-periodic sequence imitating the three-
periodic window of the logistic map. We denote
the states belonging each part as S; and S;, respec-
tively. Then the transition probabilities are given by
P(Sz|5]), Z,] = 1,2, where P(SZ|SZ) =1- P(Sz|S])

P(S|S1)

P(S1|S1) P(2|S)

P(S1|S)

Figure 4: Two-state Gilbert model.

Figure 5 shows the time series of the burst
noise obtained by the two-state Gilbert model with
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Figure 5: Burst noise imitating intermittent chaos
noise. P(Sl|51) = P(52|52) = 0.88.

IV. Simulated Results

In this section, the simulated results of the Hopfield
NN with the chaotic noise and the burst noise for 12-
element QAP are shown. For the comparison, we also
carried out computer simulation for the case that sim-
ple uniform noise in Fig. 6 is injected to the Hopfield
NN.
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Figure 6: Uniform noise.

The problem used here was chosen from the site
QAPLIB [7] named “Nugl2.” The global minimum of
this target problem is known as 578. The distance and
the flow matrices are given as

Distance:

o1 2 3 1 2 3 4 2 3 4 5

1 01 2 2 1 2 3 3 2 3 4

21 01 3 2 1 2 4 3 2 3

3 2 1 0 4 3 2 1 5 4 3 2

1 2 3 4 0 1 2 3 1 2 3 4

21 2 3 1 0 1 2 2 1 2 3

3 2 1 2 2 1 0 1 3 2 1 2

4 3 2 1 3 2 1 0 4 3 2 1

2 3 4 5 1 2 3 4 0 1 2 3

3 2 3 4 2 1 2 3 1 0 1 2

4 3 2 3 3 2 1 2 2 1 0 1

5 4 3 2 4 3 2 1 3 2 1 0

Flow

0 5 2 4 1 0 0 6 2 1 1 1
5 0 3 0 2 2 2 0 4 5 0 0
2 3 0 O 0 0 0 5 5 2 2 2
4 0 0 O 5 2 2 10 0 0 5 5
1 2 0 5 0 10 O 0 0 5 1 1
0o 2 0 2 10 O 5 1 1 5 4 0
0o 2 0 2 0 5 o 10 5 2 3 3
6 0 5 10 O 1 10 O 0O 0 5 0
2 4 5 0 0 1 5 0 0 0 10 10
1 5 2 0 5 5 2 0 0O 0O 5 0
1 0 2 5 1 4 3 5 10 5 0 2
1 0 2 5 1 0 3 0 10 0 2 0

Since we know the global minimum in advance, we
define the Success as that the NN finds the global
minimum at least once during the defined iteration
number Niteration- We repeat this trial 100 times and
count the number of the Success for the solving ability
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Table 1: Solving abilities for 12-element QAP.

| || Chaos || Burst || Uniform ||

| Niteration || SA[%] | Average | Error[%] || SA[%] | Average | Error[%] || SA[%] | Average | Error[%] ||
1000 1 613.10 6.073 1 622.74 7.740 0 625.58 8.232
2000 2 605.44 4.747 1 613.86 6.204 0 617.56 6.844
3000 3 601.74 4.107 2 608.24 5.232 0 613.96 6.221
4000 3 599.84 3.779 2 605.30 4.723 0 611.02 5.713
5000 5 598.06 3.471 3 603.62 4.433 0 608.58 5.291
6000 6 596.98 3.284 3 602.84 4.298 0 607.52 5.107
7000 7 595.66 3.055 5 601.08 3.993 1 605.30 4.723
8000 7 595.18 2.972 6 599.96 3.799 1 604.62 4.606
9000 7 594.62 2.875 6 599.84 3.779 1 602.38 4.218
10000 8 594.08 2.782 7 598.92 3.619 1 602.12 4.173

S A defined as [3] M. Hasegawa, T. Ikeguchi, T. Matozaki and K. Ai-

Number of Success hara, “An Analysis on Adding Effects of Nonlinear

SA = x 100[%]. (7) Dynamics for Combinatorial Optimization,” IEICE

Number of Trials

We also record the minimum cost found during the
trial and use the Average of the minima for the eval-
uation. The Error is defined as

Average — Optimal Solution

Error = x 100[%]. (8)

Optimal Solution

The results are summarized in Table 1. The param-
eters of the Hopfield NN are fixed as A = 0.9, B = 0.9,
q = 140, ¢ = 0.02 and the amplitude of the injected
noise is fixed as f = 0.6. The results show that the
chaotic noise and the burst noise have much better
performance than the uniform noise. Furthermore, it
is interesting to note that the burst noise generated by
the Gilbert model has the similar performance to the
chaotic noise. We consider that one reason of the good
performance of the chaotic noise can be explained by
the existence of the laminar part and the burst part.

V. Conclusions

We have investigated the solving abilities of the Hop-
field NN with noises for QAP. We confirmed by the
computer simulations that the burst noise achieved the
good performance as the chaotic noise for QAP. Hence,
we can say that the existence of the laminar part and
the burst part is one reason of the good performance
of the Hopfield NN with chaotic burst.
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