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Abstract - This paper presents the two-layer cel-
lular neural Networks for some important image pro-
cessing applications, in which two new templates are
introduced to couple between the two layers. Several
simulations such as linear non-separable task, center
point detection and skeletonizing, are executed with
the two-layer CNN and their templates are given. All
of them display that the two-layer CNNs behave more
efficient for image processing compared with single-
layer CNNs. In addition, the stability of the two-
layer CNN with symmetric templates and/or special
coupling templates is also discussed based on the Lya-
punov function technique. Its equilibrium points are
found from the trajectories in a phase plane. These
results agree with those from simulations.

I. INTRODUCTION

Owing to the efforts of reseachers that have been done
in Cellular Neural Networks (CNNs) [1], many kinds of
templates have been already proposed for special pur-
poses for single-layer CNNs. Many image processings,
such as center point detection, skeletonizing, etc., can be
carried out by the iterative use of different time-variant
templates [2]-[4], where each single-layer CNN is itera-
tively used to perform a part of task. Namely, after
the operation of CNN has attained to the steady state
or reached at some state, the next single-layer CNN be-
gins to perform the next part of the task. In this way,
the process iteratively continues until the whole task is
completed. It is obvious that this procedure is tedious
and belongs to serial processing. On the other hand, it
is well known in neural networks that if a multi-layer
structure neural network is taken into consideration, it
will have more widely applications in the different fields
such as nonlinear separation, optimization and pattern
recognition, etc. This mechanism will be also valid to
cellular neural networks. In order to improve its appli-
cations, a cellular neural network model with two-layers
structure is introduced to solve some complicated image
processing problems in this paper. Throught our exper-
imental examples, we observe that the two-layer CNN
structure behave more efficient for image processing. Fi-

nally, the stability of the two-layer CNN with symmetric
and/or special templates is also discussed based on the
Lyapunov function technique; the equilibrium points are
demonstrated by the trajectries in the phase plane.

II. STRUCTURE OF TWO-LAYER CNN

The two-layer CNNs used in this paper is composed of
a two dimensional M by N array of cells. Each cell in
the array is denoted by c(i, j), and has two state variables
x1(i, j), x2(i, j), where (i, j) stands for the position of a
cell in the array, for 1 ≤ i ≤ M and 1 ≤ j ≤ N .

Now, we are going to formulate the system equations
of the two-layer CNNs by introducing two new counpling
templates C12 and C21 between two layers. The state
equations of each cell are given by two first-order dif-
ferential equations Eq.(1), and the output equations are
given by Eq.(2), where f(·) is a piecewise-linear nonlinear
function defined by Eq.(3).

dx1,ij

dt = −x1,ij + I1

+
∑

C(k,l)∈Nr(i,j) A1(i, j; k, l)y1,kl

+
∑

C(k,l)∈Nr(i,j) B1(i, j; k, l)u1,kl

+
∑

C(k,l)∈Nr(i,j) C12(i, j; k, l)y2,kl
dx2,ij

dt = −x2,ij + I2

+
∑

C(k,l)∈Nr(i,j) A2(i, j; k, l)y2,kl

+
∑

C(k,l)∈Nr(i,j) B2(i, j; k, l)u2,kl

+
∑

C(k,l)∈Nr(i,j) C21(i, j; k, l)y1,kl




(1)

y1,ij = f(x1,ij)
y2,ij = f(x2,ij)

}
(2)

f(x) = 0.5(|x + 1| − |x − 1|). (3)

We define state variables of the first layer by x1(i, j),
and those of the second layer by x2(i, j). u and y refer
to the input and output variables of the cell. A(i, j; k, l),
B(i, j; k, l), and I are the feedback template, filter tem-
plate and bias current, respectively. The index 1 and 2
stand for first layer and second layer of the two-layer
CNN array. C12(i, j; k, l) is the coupling template to
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Fig. 1. Block diagram of the two-layer CNN

transfer the second layer output to the first layer input,
and C21(i, j; k, l) is vice versa. The two new templates
also show the weight of the local coupling among the cells
in the neighborhood Nr(i, j) the same as A(i, j; k, l) and
B(i, j; k, l). r is the coupling radius. In generally, r takes
the value of 1 or 2.

The block diagram of two-layer CNN is shown by Fig.1.
When both two C templates are zero, the CNN array
becomes obviously two independent single-layer CNNs.
When at least one of the templates C12 and C21 is not
zero, the CNN becomes an open-loop system with behav-
ing as the cascade connections of two single-layer CNNs
or constitutes a closed-loop system. The two layers of
the CNN share out the tasks of some image process-
ings and cooperate with each other, which cannot be
performed with single-layer CNN. Note that CNNs pro-
posed in some literatures [2]-[4] are serial image process-
ings with the single-layer CNN, and on the contrary, our
two-layer CNN is parallel image processings. Therefore,
compared to the single-layer CNNs, the two-layer CNNs
can more efficiently solve some problems in image pro-
cessings, which can not be easily obtained by single-layer
CNNs.

III. TEMPLATES AND ALGORITHMS FOR
IMAGE PROCESSING

Image processing is one of the most important appli-
cations of the CNNs. In this section, we will give several
important and interested examples of the two-layer CNNs
which show efficiently for image processing compared to
the single-layer CNNs.

A. Linearly Non-Separable Problems

Now, let us consider a two-layer uncoupled CNN. For
simplification, we omit the subscript (i,j), because each
cell in CNNs is coupled in the same way. Thus, the cell

dx1/dt
dx2/dt

0 1 2-1-2

1

-1

x1,ij

x2,ij

g1 and g2

Fig. 2. The trajectories of state variables for various g1 and
g2, where we set a1,00 = a2,00 = 2 and the stable and
unstable equilibrium points are denoted by the solid dots
and circles, respectively.

equations are written as follows;

ẋ1 = −x1 + a1,00y1 + b1,00u1 + c12,00y2 + I1

= −x1 + a1,00y1 + g1

ẋ2 = −x2 + a2,00y2 + b2,00u2 + c21,00y1 + I2

= −x2 + a2,00y2 + g2




(4)

For the self-feedback coefficients a1,00 > 1 and a2,00 > 1,
the trajectory of the state variables without g1 and g2

behave as shown by the solid line in Fig.2. By shifting
g1 and g2, we have the trajectries shown by the dotted
lines in the figure. Observe that if we choose the ini-
tial conditions x1(0) and x2(0) larger than the unstable
equilibrium points, the steady-state output will be given
by 1, and otherwise, the outputs given by -1. Thus, we
have the following output relations depending the initial
conditions;




y1 = sgn[x1(0) + g1
a1,00−1 ]

= sgn[x1(0) + b1,00u1+c12,00y2+I1
a1,00−1 ]

y2 = sgn[x2(0) + g2
a2,00−1 ]

= sgn[x2(0) + b2,00u2+c21,00y1+I2
a2,00−1 ]

(5)

where b1,00, b2,00, c12,00, c21,00, I1 and I2 are the constant
parameters. u1 and u2 are the inputs of cells, which are
usually equal to 1 or −1 corresponding to black or white
pixel in the binary image, or are between 1 and −1 for the
grey scale image. Therefore, by suitably selecting these
parameters and initial state conditions, we can obtain
the expected outputs.

For example, consider the two-layer CNN to perform
a linearly non-separable task – logic XOR, which cannot
be directly solved by the single-layer CNNs. The logic
function can be written as

F = X1 ⊕ X2 (6)
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Fig. 3. An example for solving a non-linearly separable prob-
lem. (a), (b) and (c) are the input, the initial state con-
dition and the output of first layer, (d), (e) and (f) are
the input, the initial state condition and the output of
second layer, respectively.

The input of two pixels has four possible combinations.
The output will be black only if one of the two pixels is
black. The templates are:

A1 = A2 = 2, B1 = B2 = 1,

C21 = −2, C12 = 0, I1 = I2 = −1. (7)

One of the two given images is set to the input u1 of first
layer CNN and the initial state x2(0) of the second layer.
The another image is set the input u2 of second layer and
the state x1(0) of first layer. The execution result can
be obtained from the output of second layer. They are
shown by Fig.3, where (a) and (d) are two input images of
the two layers, and (b) and (e) are the initial state. The
execution result is shown by (f), where the black pixels
are obtained only when one of the two inputs has a black
pixel, and white pixels are obtained for every other cases.
The output of first layer shows the result obtained by
logic AND of the two images. These results are calculated
by the relations (5). From the above simulation result,
we have shown that the uncoupled two-layer CNNs are
capable to perform non-linearly separable tasks.

In fact, the above example is executed based on the two
layers of the CNN with cascade. Moreover, in this case,
we can see that not only the developed templates and
stability conditions in single-layer CNNs are valid to the
two-layer CNNs, but also some compound tasks, which
consist of logic operations, edge detection, etc., can be
directly solved in one step. When the two C templates
are not zero, the two-layer CNN constitutes a closed-
loop case, every layer output is fed into the other layer
input. It is because we use the mutual feed characteristics
between the two layers of the CNN, the two-layer CNNs

(a) (b)

(c) (d)

Fig. 4. An example for dividing object into half-and-half. (a)
the input of first layer, (b) the output of first layer, (c)
the input of second layer, (d) the output of second layer.

can execute some complicated tasks.

B. Divide Object into Half-and-half

Now let us consider a problem to divide object into half-
and-half or two parts with the same area. This task
can be executed by the two-layer CNN in one step. The
basic idea of the algorithm is that, the two layers of the
CNN are respectively and simultaneously used to peel
pixels from two sides of the object, when the process
reaches the centerline, the two-layer CNN arrives at the
steady state, thus the object is divided into two parts
which are respectively output in the CNN two layers.
The templates are given as follows;

A1 =
[

1 2 −1
]
, B1 =

[
0 1 1

]
, I1 = −2

A2 =
[ −1 2 1

]
, B2 =

[
1 1 0

]
, I2 = −2

C12 =
[

1 0 −1
]
, C21 =

[ −1 0 1
]
; (8)

In this case, the given binary image is set to all the inputs
and initial states of the CNN as shown in Fig.4(a) and
(c). Thus, we obtained the two different parts with the
same area from the given object on the two layer outputs
of the CNN, which are shown in Fig.4(b) and (d).

C. Center Point Detection

It is very important to detect the center point of a given
object. Unfortunately, the definition of the center point
is very ambiguous, because there are various objects such
as convex, concave, disk with embeded holes, etc. In
this paper, we define “the center point is located at the
halfway from the furthermost points of a given object”.
Therefore, Without the loss of generality, we can con-
sider that the object image is a rectangle block such as
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Fig. 5. An example for extracting the center line of an object.
States from (a) to (d) are the output of the first layer in
the time progress, and those from (e) to (h) are the output
of second layer. Final results of the two-layer CNN are
shown by (d) and (h).

Fig.5(a), because arbitrary shape objects can be changed
into rectangle blocks with the same length and width by
using the shadow template [5]. If a single-layer CNN is
applied to this problem, the algorithm is based on 8 steps
or 8 single-layer CNNs [5]. The eight single-layer CNNs
are circularly and continuously used to peel off pixels
from the object in eight directions until only the center
point of the object is remained. This is a very compli-
cated process. In contrast, by using the two-layer CNNs,
this task can be solved in two steps, the first step is to
detect the centerline of the object, and the second step
is to detect the center point of the above centerline.

C.1 Detection of the Center Line of an Object

Now, consider a center line detection problem shown
in Fig.5(a). The two layers of the CNN are respectively
used to continuously peel off the most left side and/or
right side pixels of the object at the same time, until its
centerline is left. For this purpose, we set the object im-
age to the initial states of the both CNN layers as shown
Fig.5(a) and (e), and adopt the following templates:

A1=


 0 0 0

0.5 2 −0.5
0 0 0


 , C12=


 0 0 0

0 2.8 −1
0 0 0


 ,

B1 =0,
I1 =−2,

A2=


 0 0 0
−0.5 2 0.5

0 0 0


, C21=


 0 0 0
−1 2.8 0
0 0 0


,

B2 =0,
I2 =−2,

(9)

At the beginning of this simulation, the first layer and
the second layer of the CNN respectively perform a
peeling-off the leftmost pixels and the rightmost pixels
of the object. Thus we get the middle results as shown
in Fig.5(b) and (f), respectively. After that, the right-
most pixels of the first layer and the leftmost pixels of the
second layer are peeled off, then we get the next middle

Fig. 6. The sum of state error via time for center line extrac-
tion

results as shown in Fig.5(c) and (g), respectively. As we
can see that Fig.5(c) and (g) are the same with Fig.5(a)
and (e), except for the both end pixels which have been
peeled off. Thus, one cycle of the peeling-off is completed.
Like this cycle continues until the vertical centerline is re-
mained. The transient has arrived at the steady state.
The two-layer stable outputs are shown in Fig.5(d) and
(h), respectively. So far we obtain the center line of the
the object. In this simulation, the zero-fixed boundary
condition is also adopted. This dynamic process can be
observed from the graph of the sum of state-errors vary-
ing with the integration time shown in Fig.6. The sum
of state-errors is defined as

SCNN(t) =
M∑
i=1

N∑
j=1

((x1,ij(t + ∆t) − x1,ij(t))2

+(x2,ij(t + ∆t) − x2,ij(t))2) (10)

The valleys show the states when the pixels from the two
layers are unbalanced states. After the object is com-
pletely peeled off and becomes a line, the sum of state-
errors decays to zero.

C.2 Detection of the Center Point

To detect the center point from the above center line,
we need to apply the same algorithm to the center line
with the transposed templates as follows;

A1=


 0 0.5 0

0 2 0
0 −0.5 0


 , C12=


 0 0 0

0 2.8 0
0 −1 0


 ,

B1 =0,
I1 =−2,

A2=


0 −0.5 0

0 2 0
0 0.5 0


, C21=


 0 −1 0

0 2.8 0
0 0 0


,

B2 =0,
I2 =−2,

(11)

The simulation results are shown in Fig.7. Thus, we can
find the center point in two steps.

D. Skeletonization

Skeletonization is a very important task in image pro-
cessing. The problem of skeletonization using CNN has
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(a) (b) (c)

(d) (e) (f)

Fig. 7. An example for extracting the center point of line. (a),
(b) and (c) are the initial state condition, the transient
result and the output of first layer. (d), (e) and (f) are
the initial state condition, the transient result and the
output of the second layer, respectively.

already attacked in several literatures [2]-[4],etc. Similar
to center point dectection, all of the solutions are also
based on using complex multilayer, time variant tem-
plates or sometimes even nonuniform CNN architectures.
similarly, by using the two-layer CNN, the problem can
be efficiently solved. The algorithm is described in the
following.

The templates are

A1=


0 0 0

0 4 0
0 0 0


, C12=


0.07 0.07 0.07

0.07 −1.6 0.07
0.07 0.07 0.07


,

A2=


0 0 0

0 3.1 0
0 0 0


, C21=


−0.5 −0.5 −0.5
−0.5 4.2 −0.5
−0.5 −0.5 −0.5


,

B1 = B2 =0, I1 = I2 =−1.9, (12)

In this simulation, the binary image shown in Fig.8(a)
are set to each layer initial states of the CNN. The inputs
are arbitrary and the boundary condition is zero-fixed.
Thus, we obtained the result from the second layer stable
output as shown in Fig.8(b). We have shown the pow-
erfulness of the two-layer CNN for skeletonization, even
though there are a few inperfections yet in the second
output.

IV. Stability of Two-Layer CNNs

Since the CNNs are usually required to be stable for
the applications, the studies on complete stability have
been vigorously discussed and many criteria have been
obtained. In this section, we will discuss the convergence
property, and its related problems for the two-layer CNNs
with symmetric and/or special templates.

(a) (b)

Fig. 8. An example for skeletonization. (a) is the initial
states, (b) is stable output of the second layer.

For analyzing the convergence properties of dynamic
nonlinear systems, one of the most effective techniques is
Lyapunov’s method, which has been successfully applied
to the stability analysis of single-layer CNN [1]. In this
section, we analyze simply the stability of the two-layer
CNN with the same techniques. We define a Lyapunov
function E(t) of a two-layer CNN by the scalar function,
which is similar to the one used by Hopfield in [5] and can
be interpreted as the “generalized energy” for a two-layer
CNN.

E(t) = − 1
2

∑
(i,j)

∑
(k,l) A1(i, j; k, l)y1,ijy1,kl

+
∑

(i,j)

∑
(k,l) B1(i, j; k, l)y1,iju1,kl

− 1
2

∑
(i,j)

∑
(k,l) C1(i, j; k, l)y1,ijy2,kl

+ 1
2

∑
(i,j) y2

1,ij −
∑

(i,j) I1y1,ij

− 1
2

∑
(i,j)

∑
(k,l) A2(i, j; k, l)y2,ijy2,kl

+
∑

(i,j)

∑
(k,l) B2(i, j; k, l)y2,iju2,kl

− 1
2

∑
(i,j)

∑
(k,l) C2(i, j; k, l)y2,ijy1,kl

+ 1
2

∑
(i,j) y2

2,ij −
∑

(i,j) I2y1,ij

(13)

Therefore, we can show that the function E(t) is
bounded as follows;

Maxt|E(t)| ≤ Emax (14)

Where

Emax = + 1
2

∑
(i,j)

∑
(k,l) |A1(i, j; k, l)|

+
∑

(i,j)

∑
(k,l) |B1(i, j; k, l)|

+ 1
2

∑
(i,j)

∑
(k,l) |C1(i, j; k, l)|

+ 1
2

∑
(i,j)

∑
(k,l) |A2(i, j; k, l)|

+
∑

(i,j)

∑
(k,l) |B2(i, j; k, l)|

+ 1
2

∑
(i,j)

∑
(k,l) |C2(i, j; k, l)|

+MN(1 + |I1| + |I2|)

(15)

Now, we consider two cases having the following cloning
templates;

• Case 1


A1(i, j; k, l) = A1(k, l; i, j)
A2(i, j; k, l) = A2(k, l; i, j)
C1(i, j; k, l) = C1(k, l; i, j) = C(i, j; k, l)
C2(i, j; k, l) = C2(k, l; i, j) = C(i, j; k, l)

(16)
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• Case 2 


A1(i, j; k, l) = A1(k, l; i, j)
A2(i, j; k, l) = A2(k, l; i, j)
C1(i, j; k, l) = C2(k, l; i, j)
C2(i, j; k, l) = C1(k, l; i, j)

(17)

From Eq.(13), we have the following relation for the
cases of 1 and 2:

dE(t)
dt = −∑

(i,j)[(
dy1,ij

dt )2 + (dy2,ij

dt )2] ≤ 0 (18)

Thus, we found that the energy function is monotone
decreasing, where we used the following constraint con-
ditions;

dy1,ij

dx1,ij
=

{
1 |x1,ij | < 1
0 |x1,ij | ≥ 1 (19)

dy2,ij

dx2,ij
=

{
1 |x2,ij | < 1
0 |x2,ij | ≥ 1 (20)

We find that from Eq.(14) and (18), for any given inputs
u1, u2 and the initial states x1, x2, we obtain that

lim
t→∞ E(t) = const. (21)

and

lim
t→∞

dE(t)
dt

= 0 (22)

Thus, in the cases of 1 and 2, we always have the stable
steady state outputs in both two layers after the tran-
sient. Now, we show that both the states x1 and x2

approaches to the equibrium points. Let us consider the
system equations Eq.(1)-(3) again, and rewrite them in
the following form;

dx1,ij(t)
dt

= −f1(x1,ij(t)) + g1(t) (23)

dx2,ij(t)
dt

= −f2(x2,ij(t)) + g2(t) (24)

where

f1(x1,ij)=x1,ij− 1
2
A1(i, j; i, j)(|x1,ij +1|−|x1,ij−1|) (25)

f2(x2,ij)=x2,ij− 1
2
A2(i, j; i, j)(|x2,ij +1|−|x2,ij−1|) (26)

g1(t) =
∑

(k,l) �=(i,j)

A1(i, j; k, l)y1,kl +
∑
(k,l)

C21(i, j; k, l)y2,kl

+
∑
(k,l)

B1(i, j; k, l)u1,kl + I1 (27)

g2(t) =
∑

(k,l) �=(i,j)

A2(i, j; k, l)y2,kl +
∑
(k,l)

C12(i, j; k, l)y1,kl

+
∑
(k,l)

B2(i, j; k, l)u2,kl + I2 (28)

Observe that g1(t) and g2(t) are not related to the states
x1,ij and x2,ij , and are only the functions of the outputs
(y1, y2), inputs (u1, u2) and biases (I1, I2). Therefore,
for A1(i, j; i, j) > 1 and A1(i, j; i, j) > 1 the trajectries
have the same structures as shown in Fig.2, and have
the stable and unstable equibrium points. Thus, we can
conclude for the cases of 1 and 2 that the steady state of
two-layer CNN is completely stable, in the meaning that
both states and outputs are in the steady state. The
validity of the above analysis are comfirmed from the
above simulation examples.

V. Conclusions

In this paper, we preliminarily investigated the im-
age processing applications and stability of the two-layer
CNNs. Although the examples proposed in this paper
can be solved by single-layer CNNs, the applications of
two-layer CNNs to these problems are very efficient com-
pared to the single-layers. Especially, the center point
detection and skeletonzation problems with the two-layer
CNN can be found the solution in simple methods, how-
ever, if we use the single-layer CNN, it will be found many
steps depending on the size. We can prove the stability
for the special cases of two-layer CNNs, where its nec-
essary conditions are proved by the Lyapunov function
and behaviors of the trajectories on the phase plane.
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