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Abstract— In this study, phase synchronization
observed in a ring of chaotic circuits coupled by re-
sistors is analyzed. For the case that an odd number
(2N+1) of the circuits are coupled, a kind of frustra-
tion is caused and (2N+1)-phase synchronization of
chaos is stably generated.

I. Introduction

Recently, phase synchronization of chaotic oscillators
attract many researchers’ attentions [1]. Because it
seems to be impossible to give rigorous definition of
phase for chaotic signals, theoretical analysis of the
phenomenon is quite difficult and hence much still
remains to be done to understand the phenomenon
completely. Further, there have been few results on
phase synchronization based on real physical systems
such as electrical circuits. On the other hand, the au-
thors have been working on coupled chaotic circuits
and have found some of them could produce similar
phenomenon [2]-[4].
In this study, we propose a ring of chaotic circuits

coupled by resistors. Because the system has the cou-
pling structure such that the energy consumed by the
coupling resistors becomes minimum when the adja-
cent two circuits are synchronized at anti-phase, a kind
of frustration is caused for the case that an odd num-
ber of the circuits are coupled. In that case, we can
observe the phase synchronization. The phenomenon
is observed from both of circuit experiments and com-
puter calculations. For any odd number 2N+1, we
observe (2N+1)-phase synchronization of chaos. In
order to analyze the phenomena, we define phase of
chaotic signal using the projections of the orbits of the
chaotic circuits. Although the definition cannot give
exact meaning of the phase of chaotic signal, that can
make it possible to give qualitative discussions on the
phase synchronization.

II. Circuit Model

Figure 1 shows the chaotic subcircuit. Each subcir-
cuit is three-dimensional autonomous one and consists
of three memory elements, one linear negative resistor
and one diode. We can regard the diodes as pure re-
sistive elements, because operation frequency is not

too high. Figure 2 shows typical example of chaotic
attractors observed from each subcircuit.
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Figure 1: Chaotic Subcircuit.

Figure 2: Typical example of chaotic attractors ob-
served from subcircuit. (a) Computer calculated re-
sult. x vs. z. α=7.0, β=0.14 and δ=100.0. (b) Cir-
cuit experimental result. I vs. v. L1=100.7mH,
L2=10.31mH, C=34.9nF and r=334Ω. H: 0.8mA/div.
V: 1.3V/div.

In this study we consider a ring of the circuits as
shown in Fig. 3. In the circuit adjacent two subcircuits
are coupled by one resistor R. Because such coupling
systems tend to minimize the energy consumed by the
coupling resistors [2][4], every two adjacent subcircuits
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Figure 3: Ring of chaotic circuits.

tend to synchronize with anti-phase. For the case that
the total number of the subcircuits is even, the above-
mentioned phase state does not cause any frustration.
However, for the case that the total number is odd,
such a apparently stable phase state does not exist
and the system gets frustrated.
At first, the i−v characteristics of the diodes are ap-

proximated by two-segment piecewise-linear functions
as

vd(ik) =
1
2
(rd ik + E − | rd ik − E | ) . (1)

By changing the variables and the parameters,



IRk =
√

C

L1
E xRk, ILk =

√
C

L1
E xLk,

ik =
√

C

L1
E yk, vk = E zk,

t =
√

L1C τ, α =
L1

L2
, β = r

√
C

L1
,

γ = R

√
C

L1
, δ = rd

√
C

L1
,

(2)

the normalized circuit equations are given as



dxRk

dτ
=

1
2
{β(xRk + xLk + yk)− zk

−γ(xRk + xL(k+1))
}

dxLk

dτ
=

1
2
{β(xRk + xLk + yk)− zk

−γ(xLk + xR(k−1))
}

dyk

dτ
= α{β(xRk + xLk + yk)− zk

−f(yk)}
dzk

dτ
= xRk + xLk + yk

(3)

( k=1, 2, 3, · · ·, N )

where

f(yk) =
1
2
(δ yk + 1− | δ yk − 1 | ) (4)

and
xL(N+1) = xL1, xR0 = xRN . (5)

Note that when the coupling parameter γ, which is in
proportion to R, is equal to zero, the coupling term
in (3) vanishes. For all of computer calculations, the
fourth-order Runge-Kutta method is used with step
size h = 0.005.

III. Simulation Results

We carried out computer simulations for the case of
N = 3 ∼ 15 and circuit experiments for N = 3 ∼ 5.
Figure 4 shows the computer simulated result for

the case of N = 7. We can see the adjacent subcircuits
are almost synchronized with anti-phase. However, be-
cause of the boundary condition of the ring structure,
the phase difference between the adjacent subcircuits
is not around π but around π − π/7. The margin π/7
is accumulated along the ring and makes π phase dif-
ference to compensate the frustration. Namely, in this
case 7-phase synchronization of chaos appears in the
ring.
Figure 5 indicates the changes of the amplitudes by

20 levels of gray scale. The phase synchronization can
be observed more clearly.
In order to investigate the observed phase synchro-

nization, let us define the Poincaré section as z1 = 0
and xR1+xL1 < 0 and plot the solutions of the subcir-
cuits on (xRk+xLk) – zk plane. The data are shown in
Fig. 6. Because the attractor observed from each sub-
circuit is strongly constrained onto the plane yk = 0
when the diode is off, we can see the phase difference
from the data. The data of the subcircuit 1 are not
visible, because the points (xR1(n)+xL1(n), z1(n)) are
always on the Poincaré section.



Figure 4: Computer simulated result for N = 7.
α=7.0, β=0.14, γ=0.1 and δ=50.0. Upper figures:
xRk + xLk vs. zk. Middle figures: xRk + xLk vs.
xR(k+1) + xL(k+1). Lower figures: τ vs. xRk + xLk.
k=1, 2, 3, · · ·, 7.

Further, we introduce the following independent
variables from the discrete data of xRk(n) + xLk(n)
and zk(n) on the Poincaré map.

ϕk(n) =




π − tan−1 zk+1(n)
xR(k+1)(n) + xL(k+1)(n)

· · · xR(k+1)(n) + xL(k+1)(n) ≥ 0

− tan−1 zk+1(n)
xR(k+1)(n) + xL(k+1)(n)

· · · xR(k+1)(n) + xL(k+1)(n) < 0
and zk+1(n) ≥ 0

2π − tan−1 zk+1(n)
xR(k+1)(n) + xL(k+1)(n)

· · · xR(k+1)(n) + xL(k+1)(n) < 0
and zk+1(n) < 0

(6)

( k=1, 2, 3, · · ·, N − 1. )

These variables can correspond to the phase differences
between the subcircuit 1 and the others. (Note that
the argument of the point (xR1(n) + xL1(n), z1(n)) is
always π, because of the definition of the Poincaré
map.) The distribution of the ϕk(n) for N = 7 is
shown in Fig. 7.
Finally, the computer simulated results for the case

of N = 15 are shown in Figs. 8 and 9. We can see
15-phase synchronization of chaos is stably generated.

Figure 5: Phase synchronization for N = 7. α=7.0,
β=0.14, γ=0.1 and δ=50.0. τ vs. xRk + xLk. k=1, 2,
3, · · ·, 7.

Figure 6: Poincaré map for N = 7. α=7.0, β=0.14,
γ=0.1 and δ=50.0. xRk(n) + xLk(n) vs. zk(n). k=1,
2, 3, · · ·, 7.

IV. Conclusions

In this study, a ring of chaotic circuits coupled by resis-
tors has been proposed and the phase synchronization
caused by a kind of frustration of the coupled system
has been analyzed.
We consider that it is interesting to investigate the

effect of the frustration of coupled systems.
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