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ABSTRACT

For circuit designing, it is very important to calculate the

dc operating points. It is known that if the circuit contains

positive feedback loops such as 
ip-
op and negative resis-

tance circuits, it may happened to have many dc solutions.

It is very di�cult to �nd all of the solutions for these cir-

cuits. In this paper, we show a very simple Spice oriented

Newton homotopy method which can e�ciently �nd out the

multiple dc solutions, and perhaps all of the solutions.

1. INTRODUCTION

Many circuits such as 
ip-
op, Schmitt-trigger, Hop�eld

neural, negative resistance circuits [1,2], and so on have mul-

tiple dc solutions. There are also many important large scale

circuits which contain some of the above sub-circuits [3,11],

where a number of the dc solutions may be rapidly increased

by the combinations of the solutions from the sub-circuits.

In these circuits, it becomes very di�cult to �nd all of the

solutions. Therefore, many papers already have been pub-

lished [3-14]. In the references [3,10,11], nonlinear resistive

elements are assumed to be piecewise-linear characteristic.

Especially, Yamamura's algorithm [11] can e�ciently �nd

all of the solutions. The interval method [12-14] can �nd all

of the solutions of nonlinear algebraic equations in a given

accuracy. Although the method is elegant in the mathemat-

ical point of view, the computational e�ciency is not good

for the large scale systems. Note that all of the above meth-

ods need to formulate the nonlinear algebraic equations for a

given circuit which is a di�cult task for large scale circuits in

the practice. The others [4-9] are based on the continuation

method, which trace the solution curves [4,5], and �nd the

solutions laying on the curves. The homotopy method [8]

can trace all of the solutions if we can �nd out all of the dis-

joint branches. However, the algorithm to �nd branches is

not so easy when the variables of system are increased. Tra-

jkovic et al.[9] have developed a Spice-like simulator having

a globally convergent property which is based on an arti�cial

parameter homotopy method. Inoue [6,7] also has developed

a simple Spice oriented simulator which e�ciently traces the

driving point characteristic curve, where the curve is traced

with the transient analysis tool of Spice, e�ciently. The

method can �nd out all solutions only if they are laying on

the driving point characteristic curve. Thus, there is not

yet any practical Spice-like algorithm to �nd all of the dc

solutions.

In this paper, we propose a Newton homotopy method

such that

F(x; �) = f (x)� (1� �)

�
g(x

0
)

0

�
= 0 (1)

f (x) : R
n
7! R

n
; g(x

0
) : R

n
7! R

p

where n is the number of nodes, and p is the number of

positive feedback loops in the circuit 1. In our homotopy

method, the initial point (1 � �)g(x
0
) with � = 0 is cor-

responding to the input current sources to the speci�ed p

nodes, whose sources are continuously changed by a variable

�, and the dc solutions are found at � = 1 on the solution

curve. By changing the initial guesses g(x
0
), we can trace

the another solution curves. In this way, it is possible to

�nd the all of the solutions. We developed a user friendly

simulator using Spice to implement our Newton homotopy

method. From many benchmark examples, we found that

our simulator can �nd all of the solutions on one branch if

we choose a suitable initial guess. It has been said that the

continuation method is a time-consuming for large scale sys-

tems because we need to trace the solution curves in a large

dimensional space. However, we found from the theorem in

section 2 that we are enough only to consider the solution

curves in the p-dimensional space. p is usually very small

compared to n because it is equal to the number of positive

feedback loops. Therefore, the simulator can be usefully ap-

plied to the dc analysis of large scale ICs.

2. NEWTON HOMOTOPY METHOD

In this section, we consider the ideas of our Newton ho-

motopy method. Let us assume the circuit equation of a

nonlinear resistive circuit as follows;

f (v) = 0; v 2 R

n
; f (�) : R

n
7! R

n
(2)

Applying the Newton homotopy method to (2), we have

F(v; �) = f (v) + (�� 1)f (v
0
) = 0 (3)

where � is an additional variable and v0 is an initial guess.

Thus, (3) has n + 1 variables and n equations, so that the

1We will prove in section 2 that the minimum number of vari-

ables to trace the solution curve is equal to the positive feedback

loops p[15,16].
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solutions of (3) are given by the solution curves in (n + 1)-

space. For simplicity, put vn+1 = �.

Then, we have from (3)

F(v) = 0; F(�) : R
n+1

7! R

n
(4)

Let us trace the curve from the initial point v0 with vn+1 =

0 (or � = 0). Then, the solutions of (2) are found at the

points vn+1 = 1 (or � = 1) on the solution curves. In our arc-

length method, a point v on the solution curve is described

by a function of the distance s from the initial guess v0. It

satis�es

(ds)
2
=

n+1X
i=1

(dvi)
2

(5)

in the Euclidean space. Combining (5) and (4), we have the

following set of algebraic-di�erential equations:

F1(v1; v2; . . . ; vn; vn+1) = 0

F2(v1; v2; . . . ; vn; vn+1) = 0

::::::::::::::::::::::::::

Fn(v1; v2; . . . ; vn; ; vn+1) = 0

(6)

n+1X
i=1

�
dvi

ds

�2
= 1

It can be solved by the backward-di�erence method [17],

where the derivative of kth order formular at s = s

j+1 is

given by

dvi

ds

���
s=sj+1

=
�k0

h

v

j+1

i
+Qk;i(v

j

i
; . . . ; vj�k+1

i
) (7)

Substituting (7) into (6) at vj+1, the algebraic-di�erential

equations are transformed into the nonlinear algebraic equa-

tion as follows:

F1(v
j+1

1 ; v

j+1

2 ; . . . ; v
j+1

n+1) = 0

F2(v
j+1

1 ; v

j+1

2 ; . . . ; v
j+1

n+1) = 0

::::::::::::::::::::::::::::::::::::

Fn(v
j+1

1 ; v

j+1

2 ; . . . ; v
j+1

n+1) = 0P
n+1

i=1
f�k0v

j+1

i
+Qk;i(:::)g

2
� h

2 = 0

9>>>=
>>>;

(8)

It is solved by the Newton method

v
j+1

= v
j
� [J]

�1
��
v=vj

H(v
j
) (9)

whereH(vj) in (9) is a set of the functions given by (8) with

vj instead of vj+1, and the Jacobian matrix is given by

J(vj) =

2
666664

@F1

@v1

@F1

@v2
. . . @F1

@vn+1
@F2

@v1

@F2

@v2
. . . @F2

@vn+1

...
...

@Fn

@v1

@Fn

@v2
. . . @Fn

@vn+1

P1(v1) P2(v2) . . . Pn+1(vn+1)

3
777775
v=vj

(10)

and

Pi(vi) = 2�k0[�k0vi +Qk;i(v
j

i
; . . . ; vj�k+1

i
)]

The solution curve can be continuously traced by the above

backward-di�erence method [17] only if the matrix J(v
j
) is

nonsingular on the solution curve. Now, we have the follow-

ing important theorem about how many and which variables

should be chosen in our solution curve tracing algorithm. We

call the indispensable variables to trace the solution curve

essential variables.

Theorem In our Newton homotopy method, the minimum

number of the variables to be chosen is equal to a number

of positive feedback loops contained in the circuit, which

means that one node voltage in each positive feedback loop

should be chosen as the essential variable.

proof The above curve tracing algorithm can trace the so-

lution curve only if the rank of J is n+1. In this case, when

the solution curve traces the multiple solutions, it must pass

through the turning points p1 and/or p2 as shown in Fig.1

[1,15,16,18]. Hence, it satis�es the relation

d�

dvi

= 0; or
dvn+1

dvi

= 0 (11)

for some i at the turning points.

1 2 3

1p

s s sρ=1

v
n+1=1

i
v

or

p
2

Fig.1 The schematic diagram of a solution curve,

s1; s2; s3 are solution points, and p1; p2 are turning points

Now, di�erentiating (4) by the arc-length s, and applying

Cramer's formula, we have

d�

ds

=
detjJ

�(n+1);�(n+1)j

detjJ
�(n+1);�ij

dvi

ds

(12)

Thus, we �nd from eqs.(11) and (12) that the cofactor

J
�(n+1);�i must be nonsingular, but J

�(n+1);�(n+1) is sin-

gular. Therefore, if the element Pi(v
j

i
) at (n+ 1; i) position

in J(vij) is set to a nonzero value, the (n + 1) � (n + 1)

Jacobian matrix (10) will become nonsingular, and our al-

gorithm can trace the curve at the turning points p1 and

p2. Therefore, we found that the node voltage vi must be

chosen as the essential variable.

In the practical Spice simulation, we need to set a probe at

the node i to get the voltage vi. Q.E.D.

Corollary A node in positive feedback loop is found in such

a manner that when the node voltage at that point is �xed,

the characteristic does not have a point satisfying the prop-

erty given by (11), any more.

From the theorem, our homotopy method can be carried

out by solving the following set of algebraic-di�erential equa-

tions:

f1(v1; v2; . . . ; vn)� (1 � �)I01 = 0

::::::::::::::::::::::::::::

fp(v1; v2; . . . ; vn)� (1 � �)I0p = 0

fp+1(v1; v2; . . . ; vn) = 0

::::::::::::::::::::::::::::

fn(v1; v2; . . . ; vn) = 0

9>>>>>=
>>>>>;

(13)

and
pX

i=1

�
dvi

ds

�2
+

�
d�

ds

�2
� 1 = 0 (14)

where fv1; v2; . . . ; vpg are the essential variables, and fI01;

. . . ; I0pg are the initial guess current sources.
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3. REALIZATION OF NEWTON

HOMOTOPY METHOD

We have developed our Newton homotopy simulator using

Spice as shown in Fig.2.

i=1,2,...p

STC

Nonlinear

resistive circuit

Initial guess

VCCS
Σ

I 0 i

I 0 i i=1,2,...p,

vi i=1,2,...p

ρ

-1

-1ρ(       )

-1ρ

Fig.2 Circuit diagram of our Newton homotopy method

We �rst set the initial guesses fI01; . . . ; I0pg, and get

the input current sources (� � 1)I0i; i = 1; . . . ; p with

VCCSs(voltage-controlled current source) and multipliers.

Secondly, the voltage � satisfying the relation (14) can be

produced by STC(solution curve tracing circuit) [6] as shown

in Fig.3.

k =1

k   v

I

VCCS

I

k =1I
VCCSN

R

a

Int

I s =

i=1

p
v= Σ

.
vi

2

k   I
2I = ρ

.
ρ ρ

ρ
.

1[A]

Fig.3 Solution curve tracing circuit (STC)

The input voltages to STC are the essential node voltages

v1; . . . ; vp in the positive feedback loops. At �rst, each volt-

age is transfered to the corresponding current source by

VCCS, so that the STC does not give any disturbance to the

nonlinear resistive circuit. The transfered current sources

are di�erentiated by the time t instead of the arc-length s by

the use of di�erentiators or inductor circuits. Thus, we have

_v1; . . . ; _vp, which are again squared to produce _v21 ; . . . ; _v
2
p

with multipliers, and they are summed by an adder again.

Thus, we have

v =

pX
i=1

_v
2
i

The voltage v is further transformed to the corresponding

current source Is as shown in Fig.3. Note that if we assume

the node voltage at node "a" is _�, I� = _�2 is easily produced

by a multiplier and a VCCS. Thus, we can realize the circuit

satisfying the relation (14). Furthermore, the node voltage

_� at "a" is integrated, and we can get �. Note that R in

Fig.3 is a very large resistance only to avoid the L-J cutset.

4. ILLUSTRATIVE EXAMPLES

Large scale circuits usually consist of many sub-circuits

having positive feedback loops, such as 
ip-
op circuit and

Schmitt-trigger circuit, whose sub-circuits have 3 dc solu-

tions, two of them are stable and the other is unstable [18].

Negative resistance circuits [2] have also multiple solutions.

If these sub-circuits are coupled in each other, then, they

may have many dc solutions. In this section, we solve some

important benchmark problems.

4.1 Transistor-diode circuit

Fig.4 is a well-known benchmark circuit [3-11] having 11

dc solutions. The circuit consists of 3 Schmitt-trigger cir-

cuits. The circuit is constructed in such manner that the

output voltages from 2 sub-circuits in the right hand side

are inputted into the left hand side circuit through diodes.

In this example, we used 3 probes at 3 positive feedback

loops as shown in Fig.4. With the initial guess I01 = 1[mA]

I02 = 1[mA] I03 = 5[mA], we can trace all of the solutions

at � = 1 on the solution curve as shown in Fig.5. We also

found that our Newton homotopy method can trace all of

the solutions for any initial guess in relatively large region.

The solutions are shown in Table 1.
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Fig.4 Transistor-diode circuit
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Fig.5 A set of solution curves with our Newton homotopy

method, where we get the solutions at � = 1.

4.2 Flip-
op and Schmitt-trigger circuits

Let us apply our Newton homotopy method to a circuit

shown in Fig.6, where 
ip-
op and Schmitt-trigger sub-

circuits are coupled with a resistor R0. We found that, for a

large R0, the two sub-circuits are weakly coupled each other,

and it has 9 dc solutions. If we choose the smaller R0, the

number of solutions will be decreased because of their strong

coupling. We need 2 probes at each positive feedback loop

as shown in Fig.6. We can trace 9 dc solutions with the

V-449



initial guess I01 = 3[mA] I02 = 5[mA] and R0 = 2[k
]. In

the strongly coupled circuit with R0 = 10[
], however, the

circuit only has 3 dc solutions.

4k

8k 8k

4k

0.1k 0.1k
50 1k

1k 3k 11k

12V

15k V
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T
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T
T

1

2
1

2
3

4

R0

2k
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Σ
ρ

I 01
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I 02-1ρ(       )I 01-1ρ(       )

-1ρ

Fig.6 Flip-Schmitt circuit
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Fig.7 A set of solution curves with our Newton homotopy

method, where we get the solutions at � = 1.

Table Dc solutions of transistor-diode circuit

Solution V1 V2 V3

S1 0.719 10.222 10.222

S2 0.691 10.221 10.220

S3 0.036 10.216 10.222

S4 0.028 1.134 10.223

S5 0.027 0.271 10.223

S6 0.023 0.271 1.135

S7 0.024 1.135 1.135

S8 0.028 10.218 1.135

S9 0.027 10.223 0.271

S10 0.023 1.134 0.271

S11 0.021 0.271 0.271

5. CONCLUSIONS AND REMARKS

We developed a user friendly simulator to �nd the multi-

ple dc solutions based on our Newton homotopy method.

The simulator is consisted of a simple solution curve tracing

circuits(STC), an adder(�) and voltage controlled current

sources(VCCS). The solution curves are traced by the use of

transient analysis tool of Spice, and the solutions are found

on the curves at � = 1. In order to trace the multiple so-

lutions, we need to set one probe at each positive feedback

loop to get the essential node voltage. If we choose a suitable

initial guess, it may trace all of the dc solutions. Otherwise,

we need to try some curve tracing algorithms from the dif-

ferent initial guesses. Thus, it is possible to �nd all of the

solutions. However, how to �nd the all of the solutions is

the future problem.
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