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ABSTRACT
In this study, bifurcation and complex phenomena in syn-
chronizing chaotic oscillators coupled by a lossless trans-
mission line are investigated. The period-doubling bifurca-
tion with varying the time delay is observed in our circuit
model. Further the voltage distribution of transmission line
is simulated in order to investigate whether the current flow-
ing through the transmission line is constant or not. It is
found that the subsystems synchronize although the current
through the transmission line keeps on varying.

1. INTRODUCTION

Since synchronization of chaos has been reported by Pecora
et al. [1], it has received a great deal of attention. A large
number of recent papers have been published in this area.
However, almost studies on chaos synchronization reported
so far, have dealt with synchronization phenomena observed
from chaotic oscillators coupled by lumped elements as in
[2]. We think that the investigation of systems with time-
delayed signal is very important, because there exists the
time delay of signals in the natural fields and real systems
utilizing chaos will be affected by the time delay.

A few studies on systems coupled by elements with time
delay have been reported. In [3] two chaotic systems cou-
pled by two delay lines are investigated. It has been shown
via numerical experiments that two chaotic circuits synchro-
nized when the time delay exists.

We have also reported synchronization phenomena in a
chaotic system coupled by transmission line [4], [5]. It is
confirmed by simulations and experiments that the subsys-
tems synchronize by adjusting the characteristic impedance
of the line when the time delay increases.

Further, in this paper, we present some new results. The
bifurcation diagrams with respect to the time delay are shown.
The period-doubling bifurcation is observed from vC1-coupled
system. The voltage distribution of the transmission line is
also given in order to investigate whether the current through
the line is varying or not. It is found that the current flow-
ing through the coupling transmission line keeps on varying,

which is different from the case of lumped element cou-
pling.

2. CIRCUIT MODEL

Fig. 1 shows the circuit models used in this paper. In these
models, the Chua’s circuit is used as each chaotic subcircuit
and two subcircuits are coupled by a transmission line. The
Chua’s circuit is a extremely simple system but it exhibits
the complex dynamics of bifurcation and chaos.

In our simulations, the transmission line is modeled us-
ing the method of characteristics, where the transmission
line is replaced by the characteristic model [6]. After nor-
malizing, we obtain the following circuit equations.

vC1-coupled system:

ẋk = α(yk − xk − f(xk) + γ(wk − xk)),
ẏk = xk − yk + zk, (1)

żk = −βyk

vC2-coupled system:

ẋk = α(yk − xk − f(xk)),
ẏk = xk − yk + zk + γ(wk − yk), (2)

żk = −βyk

Where k = 1, 2,

f(x) = bx +
1
2
(a − b)[|x + 1| − |x − 1|], (3)

and
α = C2/C1, β = C2/LG2, γ = Y0/G,
t̂ = Gt/C2, τ̂ = Gτ/C2, “ ˙” = d/dt̂,
xk = vC1k/Bp, yk = vC2k/Bp, zk = iLk/GBp,

wk = ek(t̂ − τ̂ )/Bp, a = m0/G, b = m1/G.

Y0 and τ are the characteristic admittance and time delay of
the transmission line respectively, and ek is the waveform
generator of the characteristic model to simulate the reflec-
tion.

 

0-7803-6685-9/01/$10.00©2001 IEEE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

III-751



3. NUMERICAL RESULTS

The following has been confirmed numerically and experi-
mentally in our previous studies [4], [5].

• The subsystems synchronize when the time delay ex-
ists.

• When only the time delay increases, oscillations of
the subsystems stop for vC1-coupled system and the
trajectories of subsystems diverge for vC2-coupled sys-
tem.

• By adjusting the characteristic impedance, the sub-
systems in both models become to synchronize when
the time delay increases.

3.1. Bifurcation Diagram

As mentioned above, since the chaotic subsystems stop os-
cillation or their orbits diverge according to the time delay,
it is natural to think that the systems may give rise to bifur-
cation. Thus we plot bifurcation diagrams with respect to
the time delay. The circuit parameters are fixed as follows:

α = 10, a = −1.2, b = −0.75, Bp = 1,
x1 = 1.0, y1 = 0.02, z1 = 0.0,
x2 = −0.7, y2 = 0.4, z2 = 0.08.

Figs. 3 and 4 show the bifurcation diagrams. Where the
horizontal and vertical axes correspond to the time delay
and voltage vC1, respectively. Note that the two subsys-
tems are synchronized completely for the parameter values
in these figures (except the range of divergence). Surpris-
ingly enough, for vC1-coupled system, rich bifurcation phe-
nomena including the period-doubling route to chaos and
several periodic windows are observed with decreasing the
dime delay even if the two subsystems are synchronized
completely. In [3] it has been also reported that their cir-
cuit model exhibits the period-doubling bifurcation under
certain conditions. However, their subsystems did not syn-
chronize completely during the bifurcation route.

On the other hand, in vC2-coupled system, chaos syn-
chronization can be observed for relatively wide range of
time delay, since periodic orbits do not emerge even if the
time delay becomes fairly large. By increasing the time de-
lay further, the trajectories eventually diverge. Moreover,
many types of periodic window take place according as val-
ues of τ̂ .

3.2. Voltage Distribution

At first thought, we expected that the current through the
transmission line may be zero or constant, because in sys-
tems coupled by a linear resistor the current flowing the cou-
pling resistor is zero or constant. Thus we investigate the
current distribution of the transmission line.

Let the current and voltage of transmission line be i(x, t̂)
and v(x, t̂), respectively. Since i(x, t̂) = v(x, t̂)/Z0, we can
investigate the voltage distribution. In our simulations, the
transmission line is divided to 50 segments of transmission
lines, and then each of them are replaced with the charac-
teristic models.

The results with the subsystems synchronizing are shown
in Figs. 5 and 6. In turn from left, the attractor in the left
subcircuit, the attractor in the right one, the state of syn-
chronization, and the voltage distribution are given. In the
figure of voltage distribution, the axis toward the right di-
rection is the distance from the left end of transmission line,
the upward axis is the voltage vC1 or vC2, and axis toward
the depth corresponds to normalized time t̂.

As you can see from this figure, the voltage distribution
is not constant for both systems. So we can conclude that
in our systems the current is flowing through the transmis-
sion line, which is different to the case of lumped element
coupling.

4. CONCLUSION

In this study, we have reported very interesting phenomena
in a chaotic system coupled by a lossless transmission line.
Chaos synchronization is also achieved in such system as
well as systems coupled with lumped elements. It is found
that in our models bifurcation phenomena occurs with vari-
ation of the time delay. Also the current flowing through
the coupling transmission line keeps on varying, which is
different from the case of lumped element coupling.

Hereafter we intend to investigate the systems more fully
(e.g. by 2 parameter bifurcation diagrams and so on) and
then analyze the systems qualitatively. The systems may
have more exciting phenomena according to the character-
istic impedance and time delay.
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Figure 1: The circuit model. (a) vC1-coupled system. (b) vC2-coupled system.
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Figure 2: The equivalent circuits for (a) vC1-coupled system and (b) vC2-coupled system.
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Figure 3: One parameter bifurcation diagram for vC1-coupled system (β = 15, γ = 10).
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Figure 4: One parameter bifurcation diagram for vC2-coupled system (β = 18, γ = 30).
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Figure 5: Voltage distribution for v C1-coupled system (β = 15). (a) γ = 10, τ̂ = 0.001 (b) γ = 1, τ̂ = 0.01.
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Figure 6: Voltage distribution for v C2-coupled system (β = 18). (a) γ = 30, τ̂ = 0.01 (b) γ = 15, τ̂ = 0.1.
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