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1. INTRODUCTION 

Studies on spatio-temporal phenomena observed from 
coupled chaotic networks, namely coupled systems of 
many chaotic cells, are classified into two categories; 
namely discrete time systems and continuous time sys- 
tems. For discrete time systems Kaneko’s coupled 
map lattice is the most interesting and well-studied 
system [l]. He discovered various nonlinear spatio- 
temporal chaotic phenomena such as clustering, Brow- 
nian motion of defect and so on. -41~0 -4ihara’s chaos 
neural network is the most important chaotic network 
from an engineering point of view [2]. His studv in- 
dicated new possibility of engineering applications of 
chaotic networks, namely dynamical search of patterns 
embedded in neural networks utilizing chaotic wander- 
ing. Further; application of chaos neural network to 
optimization problems is widely studied. However, for 
continuous time systems there have been few studies 
on spatial patterns observed after vanishing the effect 
of initial patterns. Therefore, in order to fill the gap 
between the studies of discrete-time mathematical ab- 
stract and studies of continuous-time real physical sys- 
tems, it is important to investigate simple continuous- 
time coupled chaotic circuits networks generating clus- 
tering or pattern switching phenomenon. 

We have proposed a continuous-time coupled cha- 
otic circuits network [3]-[6] and have reported gen- 
erating spatial patterns, irregular self-switching phe- 
nomenon of spatial patterns, pattern control and so 
on. The important feature of our chaotic network is its 
couplmgstructure. Namely adjacent four chaotic cir- 
cuits are coupled by one resistor. Because such a cou- 
pling exhibited quasi-synchronization with phase dif- 
ference [7], various spatial patterns could be generated 
in the chaotic network. Therefore, the network would 
be a good model to make clear physical mechanism 
of spatio-temporal chaotic phenomena in continuous- 
time systems. However, chaotic wandering phenomena 
of phase patterns observed from a relatively larger size 
of the network has not been investigated. 

In this study, we investigate chaotic wandering phe- 
nomena of spatial patterns characterized bv phase dif- 
ferences in the coupled chaotic circuits network with 
10x10 size. Snapshots of the Poincare map tell how 

switchings of phase states start and spread over the net- 
work. Further, we can show that an independent angu- 
lar variables derived from higher-dimensional Poincare 
map can be effectively utilized in order to check the 
switching of phase states around coupling resistors. 

2. CHAOTIC CIRCUITS NETWORK 

Fig. 1 shows coupled chaotic circuits network. We ap- 
proximate the si - ,W characteristics of the diodes by a 
two-segment piecewise-linear function as 

~d(i~,~~) = 0.5 (jrd & + E - 1 ‘rd im,n - E 1 ) . (1) 

By changing the variables and parameters, 

n!=R& 6=rd/$ (2) 

the normalized circuit equations of the network with 
Nr x N2 size are described as 
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dwk,n - 
d7 - PC Xm,n + Ym,n) - zm,n - Y(Wh+,,n 
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(3) 

( m=l, 2, 3 l * Nl and n=l, 2, 3, -- N2 ) 

where 

f (Ym,n) = 
6Ym,n+l-Ifiym,n-11 

2 
I 0 

w6,n 
d b d 

= wO,n = wm,O = wm,O = w&l+l,n = w>l+l,n = 

wk,N2+l = wh,N2+1 = 0 and the value of y must be 
neglected for the calculation of the inductors on the 
edge. 

h c n n n 

Fig. 1 (a) Chaotic circuits network. (b) Magnifica- 
tion around a cell at position (m, n). 

All of the results in this study are obtained by calculat- 
ing Eq. (3) using the Runge-Kutta method with step 
size h = 0.005. In the following computer calculations 
we fix the parameters a! = 7.0, ,0 = 0.13 and 6 = 50.0 
and vary the coupling parameter y as a control param- 
eter. 

Fig. 2 An example of phase patterns observed from 
the chaotic circuits network with 10~ 10 size 
(7=0.30). 

3. SPATIAL PATTERNS 

Fig. 2 shows an example of frozen spatial patterns ob- 
served from the network with 10x 10 size. In Fig. 2 
all horizontal axes are x1,1 and vertical axis of the at- 
tractor located (mp) is xm n. Hence, if the attractor 
located (mp) is almost on 4i” line, xm,n is almost syn- 
chronized to x1,1. 7Vhile, if the attractor located (m,n) 
is almost on -45’ line, xm,n is almost synchronized 
to x1)1 with 7r phase difference. If the attractor is al- 
most on a circle, the phase sift is k90°. In Fig. 2 we 
can see that four phase synchronizations around cou- 
pling resistors can generate spatial patterns. Under the 
assumption that four-phase synchronizations are gen- 
erated around all coupling resistors, we can prove that 
the number of phase patterns appearing in Nl xNZ net- 
work is 6 (21v1-' + 2Nz-2 - 1). This means that 10x10 
network can generate 3; 066 different frozen spatial pat- 
terns and that 20x20 network generates 3,143,722 pat- 
terns. 

4. CHAOTIC WANDERING 

Further, by tuning coupling parameter, we can observe 
chaotic wandering phenomenon of phase patterns in 
the network. In order to investigate how switchings 
of phase states start and spread over the network, we 
define the Poincare section as zl,l = 0 and xl 1 < 0. 9 
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Fig. 3 shows the projections of the Poincare map onto 
( Xm,n - zrn,n ) planes, which corresponds to the result 
in Fig. 2. Because the chaotic attractor observed from 
each subcircuit is strongly constrained onto the (x - z) 
plane when the diode is off, this figure almost corre- 
sponds to the phase differences between the subcircuit 
located (&I) and the others. 

eluded in frozen patterns. Fig. 4 shows an example 
of such frozen patterns. Four-phase synchronizations 
are observed around coupling resistors indicated as l , 
while in- and opposite-phases synchronizations are ob- 
served around coupling resistors indicated as CL For 

I J i I I 

( > a 

Fig. 3 Poincarb map of the phase pattern in Fig. 2 
(y=o.30). 
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Fig. 4 Phase Pattern including in- and opposite- 
phases synchronizations and four-phase syn- 
chronizations (y = 0.10). 

By computer simulations we found two critical cou- 
pling parameter values 7~1 and 7~2 at which ob- 
served phenomena change qualitatively. Namely, for 
Y < Xl E 0.15, in- and opposite-phases synchroniza- 
tions [3] as well as four-phase synchronizations are in- 

0 C 

Chaotic wandering of phase patterns. 
6:50:. ( > = (c) 6,300 n = 6,500 - 6?400. - 6y600. (b) n = 6,400 - 

Fig. 5 
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this parameter range spatial patterns including only 
four-phase synchronizations as Fig. 3 are also stable. 
Hence, if we give random initial conditions for the net- 
work, phase states settle down to one of a number of 
stable frozen patterns. For yc1 < y < 7~2 221 0.38, in- 
and opposite-phases synchronizations become unsta- 
ble. If we give initial conditions corresponding to Fig. 4, 
the initial spatial pattern changes and will settles down 
to one of 6(2Nl-2+2Nz- 2 - 1) spatial patterns after un- 
predicted chaotic wandering. For 7~2 < y, four-phase 
synchronizations also become unstable and no stable 
spatial patterns exist. Different spatial patterns appear 
but they disappear after a while. For relatively larger 
value of y, well-organized frozen patterns are rarely 
observed. In this case we can always find some partly- 
disturbed areas in the network. Though the area may 
be well-organized after a while, another area will starts 
to stir. Snapshots of the Poincare map can show how 
switchings of phase states start and spread over the 
network. Fig. 5 shows a switching originated at (1,B) 
generates turbulence along the edge of the network. 

Finally, in order to get information of switchings of 
local phase pat terns, we define the following indepen- 
dent variables from the discrete data of xm n and zm n 7 > 
on the Poincare map. 

tan-’ 

By using these dependent angular vari ables: we 
count the number of switching generat ed around 
coupling resistors. In Fig. 6 the depth of gray at a 
position denotes switching number during 1OjOOO iter- 
ations of the Poincare map around the coupling resistor 
at the position. These data are utilized for statistical 
analysis of the chaotic wandering phenomenon. 

zm,n n ( > 

Xm,n n ( > , - _ . . . 
Xm,n(n) > 0 

2m,n n ( > 

Xm,n n ( > 
. . . 

Xm,n(n) < 0 

( > 5 

can 
all 

5. CONCLUSIONS 

In t 
1% 

his study, we have investigated chaotic wander- 
phenomena of spatial patterns characterized by 

phase differences in a-coupled chaotic circuits network. 
We showed that independent angular variables derived 
from higher-dimensional Poincare map could be effec- 
tively utilized to check the switchings of phase states. 
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