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ABSTRACT

Analysis of frequency-dependent lossy transmission lines is

very important for designing the high-speed VLSI, MCM

and PCB. The frequency-dependent paramet ers are always

obtained as tabulated data. In this paper, a new curve fit-

ting technique of the tabulated data for the moment match-

ing technique in interconnect analysis are presented. This

method based on Chebyshev interpolation enhances the ef-
ficiency of the moment matching technique.

1. INTRODUCTION

The high-speed performance of microwave or digital cir-

cuit systems is limited by the interconnect effects rather

than the switching speed of semiconductor devices. When

the operating frequency is increase, the current density of
conductor tends to be great around the surface of the con-

ductor. Due to the high packing density, the interconnects

such as VLSI, MCM and PCB are closely placed on each
other, and the current density is also great at the near side
between conductors. They are known as the skin effect

and proximity effect [1], respectively, thus the interconnects
of high-speed integrated circuits have frequency-dependent

characteristics. The frequency-dependent parameters are al-

ways obtained by any numerical procedure and as tabulated

data in real frequency. Therefore, the analysis of frequency-

dependent lossy transmission lines with tabulated data is

very important for accurate analysis VLSI’s circuits, MCM

and PCB.

For such analysis, FFT based algorithm is very accu-

rate. However, this method is not useful from computa-

tional point of view, because the system to be analyzed

contain very large number of transmissions lines, and FFT

based algorithm needs large number of data points. The
moment mat thing technique [3], [4] are efficient and accu-

rate for the interconnect analysis. Recently, these methods

are extended to the frequency-dependent case [5], [6]. Since

the moment matching techniques are essentially Pad4 ap-

proximation of any Laplace functions, if any transfer func-

tion are described in power series of complexs, the moment

matching technique can be applied to the analysis. Thus the
key technique in reference [5], [6] is how the tabulated data

in real frequency is described in power series of complex s,

and the piecewise polynomial approximation in [6] and the

least square approximation in [5] are used.

In this paper, we provide a new curve fitting technique

for the moment matching scheme in interconnect analysis.

The proposed method is based on Chebyshev interpolation

technique. Chebyshev polynomial is considered as an al-

most minimax approximate polynomial. Hence the pro-

posed method based on Chebyshev interpolation gives a

good approximation than one by means of the least square

fitting [5]. Moreover, since the proposecl method does not

require for any matrix operation, this method does not suf-

fer from the singularity problem in the least square fitting

[7]. The polynomial must be constructed as having real

coefficients due to realistic impedance or admittance func-
tions. The discrete orthogonal property of Chebyshev poly-

nomial allows us to construct the continuous polynomial
with real coefficients, different from the piecewise one in

[6].

In the numerical examples, the proposed method gives

reliable results to the tabulated data in real frequency.

2. FREQUENCY-DEPENDENT LOSSY

TRANSMISSION LINES

The frequency-dependent transmission knes are described

by the Telegrapher’s equation in the Laplace-dornain:

d

[1

v(s, x)

[1

V(s, z)

& 1(s, X) = D(s) 1(s, ~) (1)

where

D(s) =
[

o –z(s)

–Y(s) o
1

z(s) = R(s)+ sL(s), y(s) = G(s)+ sC(S).

The parameters R(s), L(s), C(s), G(s) are per unit length

resistance, inductance, capacitance, conductance matrices!
respectively, and these matrices are arbitrary functions of

complex s. Actually, these matrices are not given as a fun-
tion of complex s, but also tabulated data to some points,
jw.’s on the imaginary axis.

In this paper, our aim is how to apply the moment match-

ing scheme [3], [4] for solving (1). If any transfer functions

are described in power series of complex s, we can apply

the moment matching scheme to the analysis, because the

moment matching scheme is essentially Pad6 approxima-

tion. Hence, the input (x = O)-output (z = 1) relations of
transmission lines are described in power series of complex

s is the key technique. Assuming that the parameter ma-

trices R(s), L(s), C(s), G(s) are power series of complex
s, the matrix exponential method [5] [6] is very powerful

technique to describe the input-output relation. Here we

briefly modify the matrix exponential method to increase

the efficiency.
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Applying the matrix exponential method, the input out-

put relation of Eq. (1) is given by

[1

V(s, 1)

[1

V(s, o)

1(s, 1)
= exp(F(s)Z) 1(s, O)

[1
= ~ +(F(s)O” ~:’;)

?ESo

.
~T”sn [ 7$? ] “

(2)

n=o

In reference [3], the convergence of infinite series (2) is il-

lustrated grately depending on the length 1 of transmis-
sion lines. If the convergence is smooth, the transmission
lines must be divided in some regin. (This implies that

exp(F(s)ll) rapidly converges than exp(F(s)lz), if 11 < lz.)
In this case, the following relation is very useful in order to

get the whole characteristics of transmission lines:

exp(F(s)l) = exp(F(s) ~) . exp(F(s) ~). (3)

However, dividing the transmission lines requires for more

computational cost, because this means that some equa-
tions are added to the circuit equation. Alternatively,
exp(–J?(s)~)ismultiplied from left side of Eq. (2) instead

of dividing, and we can get the following relations:

(4)

The relation (4) represents continuity of the voltages

and currents at the center point of the transmission lines,

whereas the relation (2) gives a relation of the output vari-

ables to the input. This means that the relation (4) is more
effective than (2), because the complexity depends on the

length of the transmission lines.

Assuming F(s) as M degree matrix polynomial of com-
plex s, the coefficients of the matrix exponential (2) is ob-

tained in recursive mannar [5], [6]: - ‘

T. =

where

.

E TO,j (n= O)
j=–1

cm

x T~,j (n # O)

j=int(~)

.,

Ti, j =
~m’Y)

FkTi_k,j–l
j+l

&=o

(i=o,..., jM, j#o)

Ti, j =
‘5

FkT&_k,j–1
j+l

lc=i-j M

(i=jikf+l, . . ..(j+l)M. j#o)

Ti, O = Fil (i= O,..., M)

Ti, O = I.

(5)

exp(-F(s)l) can be calculated by multiplying Ti,~ by
(-l)J+l. Although the matrix exponential (2) congerves

after 40-50 terms, exp(F (s) 1/2) rapidly converges than

exp(F(s)l), because the length of transmission lines is half.

Interchanging the elements of (4), we can get the ports

relation of the transmission lines as follows:

3.

(6)

CHEBYSHEV INTERPOLATION SCHEME
OF FREQUENCY-DEPIENDENT

PARAMETERS

In the previous section, the matrix exponential method is

appliedtothe momentgenerationof lossy transmission lines
with frequency-dependent parameters. Here, it is assumed

that the parameters given as tabulated clata to some point

on imaginary axis are able to write in power series of com-

plex s. So, the procedure for making the power series from

the tabulated data is provided in this section.

3.1. Curve Fitting Algorithm

Let r(s), l(s), c(s), g(s) be (i,j) element of R(s), L(s), C(s),
G(s), respectively, where these values are given as tabulated
data to some points, jui’s on the imaginary axis. The (i,j)
element z(s) = r(s) + jsl (s) of the series impedance matrix

and y(s) = g(s) + jsc(s) of the parallel admittance matrix

are determined so that they satisfies

N N

J2=o k=o

(i = 0,1,..., N)

where N is the number of the data. Moreover the coeffi-

cients zk and yk are assumed as real numbers, which is a

reasonable assumption due to realktic impedance or admit-
tance functions.

Let us consider z(s) only, and y(s) can be obtained by

the same procedure. In reference [5], eliminating the lossless

part of l(s) is introduced in order to approximate accurately,

namely, the lossless part l(m) is separated from l(jw) such

as

l’(ju) = l(jw) – t(cm). (8)

Then, z’ (jw,) = ~(jw;) + jw~l’ (jw;) is interpolated by the

Chebyshev series. A transform z = w/w,. is used to convert
w G [0, Wm] into z c [0, 1]. Assuming z’(—jw) is complex

conjugate to z’ (jw), the interpolated polynomial is obtained

by

N–1

z’ (jwmz) = ~’ akTk(x) (9)

k=O

where the symbol ~’ denotes the summation with the

first component divided by 2 and Tk (z) = cos M. From

the discrete orthogonal property of Chebyshev polynomial,

ak(k=o, l... , N – 1) are given as follows:
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if N is odd,

1
;=0

ak = +T(O)COS~}(k: e“en)
N–3

.27
~ ~ ~ Zwm COS 6’.Z(jWm COS 0,) COS M’;

i=o

(k: odd)

(lo.a)

if N is even,

[

+ ~2r(~wmcos8t).os~ei(k: even)

$=0

ak = :1

.2--
j ~ ~ 2W7?lCOSOil(jW7n COS Oi) COS k70i

ico

(k: odd)

(10.b)

where 0, = =7. (i = O, I ,. ... IV – 1) are the Chebyshev
points. Note that if N is even number, the information at
s = O does not reflect the fitting curve. Hence, N is prefer

to be odd number.

The coefficients of a~ are real part or imaginary part only,
thus we can derive the power series of jw~z having real

coefficients. First, z’ (jw~z) of (9) is converted into a power

series with respect to z. Using the recurrence formula of

Chebyshev polynomial,

{

To(z) = 1, Tl(z) = 1,

~k+l (z) = %zTk (~) – Tk-1 (z),

Chebyshev polynomial Th (i = 2,3,. ..) is obtained by

(11)

T2(x) = 2X2 – 1,

T,(x) = 4X3 – 3X,

Tq(z) = 8X4 – 8Z2 + 1,

T5(z) = 1635- 20%3+ 5X,

T6(z) = 32z6 – 48x4 + 18ZZ – 1, (12)

As a result, the finite Chebyshev series (9) is converted into

a power series with x:

N–1

Z’(jwmz) = x bhxk. (13)

k=o

From (12), Tz~ (z) and TZ~+l (z) are even and odd func-

tions, respectively. Thus, bz~ and b2~+1 in (13) are respec-
tively real and imaginary part only as az~ and az~+l in

(9). Consequently, z’(jw~z) is expressed in power series of

jw~z with real coefficients:

N–1

Z’(jwmz) = ~ 4(@JAz)k,

k=o

(14)

Table 1. Coefficients of power series given by the proposed

met hod.

value
-

co 3.448 C6

a

–3.292 X 10-8

c1 4.670 c? 1.956 X 10–10

C2 -1.684 X 10-2 c~ –1.601 X 10–11

C3 5.196 X 10-4 Cg 3.295 X 10-14

C4 –3.196 X 10-7 c] o –2.917 X 10–15
I

--
, 1

C5 4.447 x 10-7

where

{

(-1)$ $ (k: even)

.zL =

(-1)** (k: odd)

From (8), (14), a element of the series impedance matrix

of transmission “fines is described by

N-1

z(s) = ’20 + S(21 + 1(00)) + ~ Zjsk.

kz2

where all coefficients of Sk are real numbers.

3.2. Shifted CoefRcients of Power Series

When the multi-point Pad& approximation [3],

(15)

[4] is used
to getting dominant poles, the shifted moments, the coeffi-

cients of Taylor expansion at an arbitrary point sk is needed.

Thus, in section II F(s) in (2) and the matrix exponential

muSt be a matrix polynomial of complex o = s — Sk.

Let be F(s) M degree matrix polynomial as (2), then F(s)
is convered into a matrix poiynomail of complex u = s —.$k:

4. NUMERICAL EXAMPLES

To show the efficiency of our method(, the 3-conductors

transmission lines provided by M. Celik alre considered. The

frequency-dependent parameters are listed as the tables II,

III in reference [5]. Using the proposed method in Sect. 3,

(2,2) element of the series impedance matrix is given by the

10-degree power series of complex s:

10

222 (s) =
x

c~ s’ (17)

i=o

where each coefficient is listed in Table 1.

For comparison, the values of 222 in s = ju and the tab-
ulat ed data are shown in Fig. 1. In thk figure, the frequen-

cies range is from O to 7 GHz. The propcwed method gives a

reliable result. The time- and frequency-domtin responses

in the example [5] can be calculated by the matrix exponen-

tial method in Sect. 2 and complex frequency hopping [3].

The circuit includes two identical 3-conductor transmission

lines, 4 resisters, 7 capacitors and 1 inductors. Transient
responses to a pulse input (0.8 [ns] pulse width, 0.1 [ns] rise
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Figure 1. (2,2) element of the series impedance matrix of
thetransmission lines provided byM. Celik [3].

and fall time) and frequency response to a impulse input

are shown in Fig. 1, 2, respectively. These result are com-

pared with the result by the frequency-domain method [8]

and single Pad4 approximation [2]. Here, in complex fre-

quency hopping, the maximum frequency is selected by 5
[GHz] and 9 expansion points is considered.

5. CONCLUSIONS

A new curve fitting technique for analysis of frequency-

dependent lossy transmission lines have been presented.

This method is efficiently incorporated with the moment

matching technique [3], [4]. Although the object of this
paper is turned to the moment mathing technique, this
method is easyly applied to the method of characteristics

by means of a technique in reference [9]. This is our future
work.
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