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ABSTRACT

There are many communication circuits driven by multi-

tone signals such as modulator and mixer. If the input

frequency components are largely dHferent in each other,

the brute force numerical method will take an enormous

comput at ion time to get the steady-state responses. In

this paper, we show a SPICE oriented algorithm based

on multi-dimensional Fourier transformation, where all of

the circuit analyses such as dc- and at-analysis in the al-

gorithm are carried out with SPICE. On the other hand,

a very simple sensitivity analysis and 2-dimensional FFT

are carried out by a Fortran program (or C program).

We found that the convergence ratio of our algorithm is

sufficiently large, and can be applied to wide class of com-

municant ion circuits.

1. INTRODUCTION

Many communication circuits, such as modulators, mix-

ers and frequency converters, are driven by multi-tone

signals. There are 2 basic approaches for the computa-

tion of the steady-state responses: (1) frequency-domain

approach [1-2] and (2) time-domain approach [3-4]. The

former can be applied only to weakly nonlinear circuits,

because the scale of determining equations becomes very

large for strongly nonlinear circuits. The latter is based

on numerical integration techniques, that can be efficiently

applied to circuits having a few number of the state vari-

ables.

Generally, modulators and mixers are driven by two

input signals, namely, the high frequency carrier and the

low frequency modulating signal. In this case, if we use

a brute force method (transient analysis) for getting the

steady-state response, it will take an enormous computa-

tional time, because the step size must be chosen sufE-

ciently small depending on the carrier signal. Consider an

example such that a ratio of the two input frequencies is

.f2/.f1 = 1000. If the step size is chosen h = T2/100 for
T2 = 1/$2, it will take 1000 x 100 numerical integrations
for only one period (Tl = l/fI).

A new SPICE oriented method is presented in this pa-

per which is based on both %dimensional Fourier trans-

formation and ~requency-domain relaxation methods. As-

sume that a given circuit is composed of nonlinear resis-

tive sub-networks and reactive elements such as capacitors

and inductors. At first, using the substitution sources, the

circuit is partitioned into two groups, namely, the nonlin-

ear resistive subnetworks and the reactive elements. The

substitution waveforms are described by 2-dimensional

Fourier expansions, and the coefficients are calculated by

the relaxation method.

We have developed a very simple simulator consisting

of SPICE and a Fortran program, where all of the circuit

analysis are implemented by SPICE. On the other hand,

very simple sensitivity analysis and 2-dimensional FFT

are carried out by the Fortran program.

2. BASIC APPROACH

To focus on the main idea of our relaxation method,

consider a circuit as shown in Fig. 1 (a)l. Now, assume

the two inputs e(t) and j(t) cent ain two independent fre-

quency components WI and W2.

Then, the substitution sources at the partitioning point

will be generally assumed of the form

M

vc(t) = VC,O + ~ {VC,M...I cos vkt + VC,M sin v~t} (1.1)

k=l

i~(t)= ~L,o+ f {~L,2k..-l cos Vkt+ 1~,2%sinVkt} (1.2)

k=l

v = m~~u~ + mz~uz (1.3)

TGener~lY, intewated circuits are composed of CaP~itO~ and

resistive elements such as transistors and diodes. If in this cnse,

it contains large capacitances, the transient response will continue

for a lsrge period, and it take long computation time to get the

stesxiy-state by the brute force method. Therefore, we partitioned

the circuit into two groups containing nonlinear resistive circuit and

resctive elements respectively, as shown in Fig. l(b)
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Fig.1 Schematic diagram of our relaxation method

where ml~, m2~ are integers satisfying

[mlkl s B, lm2kl < B (1.4)

for some sufficiently large B.

Assuming that the original circuit in Flg.l(a) has a

unique steady-state solution described by (l), then WC(t)

and iL (t)satisfies the following determining equation:

F~ (WC, ZL) = icl(t) + icz(t) = o (2.1)

F2(WC,i~) = ‘v~~ (t) – ‘uLz(t)= o (2.2)

Now, assume the nonlinear capacitor and inductor are de-

scribed by

qc2 = flc2(~c2), #L2 = &2 (~L2) (3)

Then, we have

~4c2dvC2 @L~ diL2
—— ——

‘C2 = &C2 dt ‘ ‘L2 = &L2 dt
(4)

Let us calculate the steady-state response using an itera-

tion technique. Assume the solution at the jith iteration

is given by

To evaluate the solution at the (j + l)th iteration, put

V~+l(t) = v~(t) + Avc(t), i~+l(t) = z~(t) + AiL(t) (6)

where the variations Auc (t)and AiL (t)are described by

M

Auc (t)= AVc,o+~ {AVc,2k-1 cos Ukt + AVc,2k sin Vkt}
k=l

(7.1)

M

AZL(t) = AIL,O + ~ {AIL,2k-1 cos Vkt i- AIL,2~ sin u~t}
k=l

(7.2)

Substituting V2+1(t),i~+l(t)from (6) into (2), and ne-

glecting the higher-order terms of Auc (t) and AiL (t)in

the Taylor expansion of nonlinear terms, we obtain

F1 (vi + AVC, i; + AZL) = ZC1(UC , ILj+’ “~+1) + ZC2(4+1)

i34c2(vc) dAvc = ~
+ZC2(V:) +

the dt
(8.1)

F2(’zT$ + AVC, ~~ + AZL) = VLl(V~+l, i~+l) – VL2(i~+1)

S VLl(’f&Z~) + avLj:’iL)Lhc + avL’&~’’L)AiL

@L1(ZL) dAiL = ~
‘vL2 (i;) –

6’iL dt
(8.2)

Now, define the residual sources as follows:

E~(t) = Zcl(V’&j Z~) + iC2(vA) (9.1)

c~(t) = ‘L1(VL; ‘~) – vL2(@ (9.2)

Since the relation (8) for calculating Auc and AiL is a

linear time-varying system, it is not easy to solve even if

it is linear. Therefore, we approximate the equations by

the time-invariant systems as follows:

( )(~llo H120 =
&I(lJc,iL~ aicI(Vc,tL)

avC 84L

H21O H220
zh~l(uc,i~) av~l(wc,i~

avC 6’i~ J
(10.1)

for uc = VCO, i~ = iHI, and

a~c2
co=—avc2~Go‘
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where Vco and iLo are dc solutions at the operating points.

Thus, the relation (8) can be described as follows:

(Hllo H121J
H2113 H22(J)(2)+(: -9(%)

()E;(~)———
E; (t)

(11)

Thus, we have the equivalent sensitivity circuit shown by

Fig.l(c). It can be easily solved by the phasor technique.

Observe that, although the convergence ratio may be de-

creased for the strongly nonlinear circuits, the algorithm

is very simple and produces the exact solution after con-

vergence.

The iterations will continue until the variational values

Avc (t) and AiL (t) satisfy the following stopping condi-

tion

[/ AVC II+ II AIL 11<8 (12)

AVC = [AVC,O, . . . . AVC,2M], AIL = [A.l~,o, . . . . A1~,2A4]

for a sufficiently small 6. Furthermore, if the residual cur-

rent does not satisfy the following condition:

//
II J(t) 11= 1 ‘(e~(t))z+(e;(t))’dt < e70 (13)

for a large T and a small c, then we need to increase the

Fourier terms M in (l).

Note that the nonlinear resistive network in Fig.l(a)

may have small parasitic capacitors. If they cannot be ne-

glected at the high frequency, we need to take account of

the nonlinear capacitors in Fig. 1(a). Thus, the computer

efficiency of the algorithm will be decreased according to

the number of nonlinear capacitors. In our many exam-

ples, we recommend to partition a circuit into subcircuits

at only coupling capacitors, whose capacitors voltages are

considered as substation voltage sources in Fig.l(b).

3. SPICE IMPLEMENTATION

Nowaday, SPICE is widely used for many circuit simula-

tion purposes such as de-analysis, at-analysis, transient

analysis and so on. Our simulator is implemented by ac-

and de-analysis of SPICE, and a very simple Fortran pro-

gram (or C-program).

Implementation algorithm

O. A given circuit is partitioned into nonlinear resis-

tive circuits and reactive elements with substitution

sources. Considering the amplitudes of the signal

and carrier inputs [7], set the highest harmonic M

in (l).

1.

2.

3.

4.

5.

Next, choose sufficiently small stopping conditions

6 and e in (12) and (13), respectively. At first,

we draw the dc circuit diagram, and solve it by

SPICE 2. Thus, each capacitor is replaced by a sub-

stituting voltage source with a de-voltage source

V&., and each inductor by a substituting current

source with I~o.

Set v~ (t) = V~o and i!(t) = l~o. Applying ac-

sweep of SPICE, determine H1lO, . . . . H220, Co and

Lo at zero frequency. Set j = O

Solve the, nonlinear resistive circuit with (e(t), j(t),

v~ (t), ii(t)) by de-analysis of SPICE. In this

case, 2-dimensional FFT can be carried out by

the application of the onedmensional FFT to the

wl-components and w2-components, separately [7].

Thus, we have 2-dimensional Fourier expansions of

i-&(t) and v~l (t).

Calculate the responses of nonlinear reactive el-

ements, and describe them by the 2-dimensional

Fourier expansions of i&2(t) and v~2(t). Note that if

the reactive elements are linear, we need not apply

2-dimensional FFT,

Estimate s&(t) and g;(t) given by (9). Thus, the

relation (11 ) can be easily solved by t he phasor tech-

nique, and get Avc(t) and AZL(t). If II AV& II + 1]

AI; 11<6, go to 5.

Otherwise, set v&+l (t) = v~(t) + Avc and i~+l (t) =

i~(t)+AiL, andj =j -t-l. Go to Step 1.

Estimate II e~(t) II in (13). If II d (t) It< e, stop.

Otherwise, increase B in (1.4) and go to Step O.

We have carried out the algorithm with IBM PC loading

PSPICE of MicroSim co.

4. AN ILLUSTRATIVE EXAMPLE

Consider a mixer circuit shown by Fig.2(a). It has two

inputs of

el (t) = 0.01 sin 2m x 50 x 106t[V]

e2(t) = 0.01sin27r X 51 x 10Gt[V]

We partition the circuit at the two capacitors Cl and C2,

because they are considered as sufficiently large compared

2Introduce the compensational resistors RC and —Rc if the non-

linearity is strong [8].
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Fig.2(b) Steady-state output waveform

to the parasitic capacit antes in the transistors. We assume

the waveforms as follows:

77

vJt) = v~,o+ ~ ~ {v&@ Cos(kwl + nwz)-t

k=ln=]

+Vi,kn,C2 cos(kw – 7w2)t + V&,IS sin(kwl + znwz)t

+Vi,.kn,2. sin(kwl – nwz)t}, 2 =1,2

We found that VO – VOICO — 2C0 = 2.388 [V] by the de-analysis
of SPICE. The steady-state response can be obtained in 3

iterations of our algorithm. Note that if we apply a brute

force method, it will take an enormous computation time

because the relative frequency difference of two inputs is

very small, and the response contains a very low frequency

of lMHz.

5. Conclusions and Remarks

In this paper, we have presented that 2-dimensional

Fourier transformation can be efficiently applied to calcu-

late the steady-state response driven by 2-frequency input

signals such as modulators and mixers. The efficiency does

not depend on the frequency values. Furthermore, it can

be easily modified to the analysis of multiple-frequency

inputs greater than two, and to the noise analysis.

We have developed a very simple simulator cosisting of

SPICE and a Fortran program, where all of the circuit

analyses are implemented by SPICE. Another simple sen-

sitivity analysis and 2-dimensional FFT are carried out by

the Fortran program.

Note that, for very high frequency, we need to take into

account parasitic capacitors of transistors. If the number

is increased, the computer eficiecy will be decreased the

computer efficiency. This is a future research problem.
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