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ABSTRACT

We discuss an eflicierd algorithm for solving 2-dimensional
circuits based on a multi-conductor theorem. ‘I’here have
been may papers published about transmission lines, be-
cause they are very important for design of high speed
VLSI chips. On the other hand, a device simulation is also
very important to design ICS snd to understand the qual-
itative behavior. Most of the simulation techniques are
based on the finite-difference time-domsin method, where
the devices are described by many discrete models. This is
really time-consuming because, to get exact solution, the
device must be divided into many sections. In this paper,
we show an elegant algorithm for solving 2-dimensional
circuits, which can be applied to the device simulations,

I. INTRODUCTION

Most of device simulations are based on the jinite element
techniques. Recently, new methods have been proposed for
analyzing 2-dimensional circuits, where the linearization
of the discretized semiconductor equations [1-2] permits
the efficient solution for either transient or steady-state.
For three dimensional model, the devices are divided into
much more pieces so that we need to solve large scale
equations and matrices. The reference [3] has proposed an
efficient technique using parallel computation technique.
As one of the applications, it can be used to estimate the
resistance between two points on the plate, where two ef-
ficient techniques are proposed. One of them is based on
a boundary element method [4], and the other is a node
elimination technique [5].
For conventional semiconductor devices, the circuit equa-
tions can be described by partial differential equations,
and are usually solved by the finite element techniques. It
is really time-consuming, so that many efficient techniques
are proposed [68]. Mixed-level circuit and device simula-
tions [7-8] are also time-consuming task, because we must
solve both device and circuit at every time point.
However, for a small input signal, the device is linearized

I

around the de operation point so that we can solve it in
the frequency-domain [7].
In thk paper, we propose an elegant method for solv-
ing 2-dimensional distributed circuits bssed on the multi-
conductor theorem. At first, we discretize the plane cir-
cuit into two directions such that each transmission line is
connected by the discretized R-L elements in each other.
We found that after some transformations, the circuit
equation is also described by the form of multi-conductor
transmission lines. Thus, it cm be efficiently solved in
the time-domain [9-10] and the frequency-domain [11-12]
techniques.
Note that when 2-dimensional circuit is diacretized in
M x N pieces, we must solve the same number of the cir-
cuit equations. The discretizing technique is really time-
consuming for larger M and N. Our multi-conductor
method only takes into account N or M lines, so that the
computationzd efficiency is largely improved in compared
with the USUSIdlscretized methods. As an illustrated ex-
ample, we solved a 2-dimensional circuit composed of 2
different plates.

II. ANALYSISOF 2-DIMENSIONALCIRCUITS

In order to anslyze the two-dimensional circuits, we dis-
cretize the circuit into the z and y axes as shown in Fig. 1.

Thus, the circuit equation can be described by the fol-
lowing partial equatio-ns:

I 8Vi (~~ii-1 ‘1 ~ii+l

x=–
.~+Lat ~+LmF

)

- (R.~ii_l + Rzii + Rmii+l) (1.1)

- (Gmui-l + G=t)i + Gmvi+l)

+iu,i — iy,i-l (1.2)
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where each of R,X,G and B matrices has the same form
as follow: i.e. let A be an arbhrmy matrix of R. X. G,,

i+l line and B. Then, we have

v. i i.l ‘x& R=&1.1
— \ i-1 line

Fig.1 Discretized model of 2-dimensional circuit

~ ~iu,i-l
Vi — Vi-l = y — + Rviy,i-l

&
(1.3)

8iV,i
vi+l _ vi = L VF + Ruiv,i (1.4)

i=l,2, . . ..n

where n denotes the total lines, and (Lz, R=, C=, G=) and
(L~, Rm, Cm, Gm) are self-impedances and coupling-
impedances between the lines, respectively. The circuit
equation is coupled by (1.3) and (1.4), and different from
those of multi-conductor transmission lines [11]. Although
there are time-domain and frequency-domain approaches
for solving transmission lines, we apply the frequency-
domain technique [12], because it can be essily applied to
both AC and transient analysis of “2-dimensional circuits.
Now, consider the responses of the following impulse wave-
form:

e(t) = Em sin(Kt) :O<t< T/h’

= o :T/K<t~T

and we expand it in the Fourier series ss follows:

M

e(t) = E. + ~ (E2k-1 cos )wt + & sin bt)

k=l

where w = 2~/T. Assume

vi = Viejkut, ii = Iiejkut, iui = Jyiejkut

and substituting these relations into (1), we have
.

dV
–-(R+jkwL)I, ~=-(G+jkUB)V

z––

(2)

(3)

(4)

A=

a= am

am a= am o......

\

. . . . . .

0 am a= am
am a=

where the tridlagonal elements of G and B in (4) given by

G.+ jkwBz =
(

2RY

‘z+ R;+ (kwLv)z )

(

2LV
+jkU C=- R;+ (kWLV)2

)

(
G. + jkwB. = Gm -

Ry

R;+ (kwLV)2 )

(

LV
+jk~ cm+ R;+ (kuLV)2

)

Thus, A is a tridiagonal and symmetric Toeplitz matrix,
so that the linear transformation is easily achieved. It is
known that the transfomation matrix M is independent of
the element A, and the inverse of M is equal to the trans-
pose of it [11]. Furthermore, the eigenvalues are given
Sa

~i = a= + amp (5.1)

The elements of matrix M can be computed as

~i,j = @i-l(Pi)/~j (5.2)

where ~i(~) is given in the form

The initial conditions are defined ss: do(p) = 1 and

@l(P) = P, and the normtization factor ~i is given b

It can be shown that the transformation matrix of the
tridiagonsl symmetric matrices has its inverse matrix
equal to its transpose matrix.
Using M, let us transform relations (4) sa follows:

V = MV’, I = MI’ (6)

Thus, we have

dV’

x=
-MTRMI’ – jkwMTXikfI’ (7.1)
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Fig.2 2-dimensional circuit

dI’
- -MTGMV’ - jkwMTBMV’

z–
(7.2)

All of the right hand side can be described by the diagonal
matrices as follows:

(8.1)

dI;
– - (gi,i + .i~~~i,i) u’

z–
(8.2)

Thus, the solution is given by

~’ = Kl,ieyiiz + h72,ie-7i’z (9.1)

I;= A (-K1,iey’”+ K2 ie-~i.i.)
Zi,i

(9.2)

where the characteristic impedance and propagation con-

stant are given by

‘ii=ti=i ‘“)
~i,i = ~(~i,i+jk~~i,i) (gi,i + jk~6i,i) (9.4)

where the constants Kl,i and K2,i are decided by the
boundary value conditions of the 2-dimensional plate as
shown in Fig.2, which is composed of two different plates
PI (v~~),Z$)), and P2 (-y\~),Z\~)). Assume the input lo-
cation’is k-th line and 11from the left end, and choose the
origin at (11,k). Then, we have the following 6 boundary
conditions:
1. Current at the left end is zero: l(l) (/1) = O

+ -diag($NK’’)+diag(e:’l)’K’l)=
(10.1)

2. The current must be continuous at the bound-
ary of PI and Pz: 1(2)(12)= fi3) (0)

* -’ag(%K’2)+dK’)
= -diag

(7

1 &3)~K~3) + _

,)
(10.2)

2[:) Zj:)

3. The voltage must be continuous at the bound-
ary of PI and P2: V(2)(12) = V(3)(0)

() (-Y::vf)‘@3)+K~Y(l)lzKf2) +diag e+ diag e *.D

(10.3)
4. Current at the right end is zero: I(3J (13) = O

* -diag(+?)K’3)K’)=
5. Voltage at input line: V(lJ (0)= V(z)(0)

6. Current at input line:

()
1(1)(0)

( z~ I z~ \ D ) m(o) =E,
w(o)

where ZL

(10.4)

(10.5)

(10.6)

Zvoo... o

1[
0’1
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=.. .. ... .. . . ... .. ...... ,Ek= zvY8Ek,in k

Zy Zv Zv ... 0 .
Zv Zv Zv ... Zv zuysEk,in n

[)
1 -1 0 . . . 0

O1–l ...0
D= . . . . . . . . . . . . . . . . . . . . .

000...–1

000 ...1

[1

o ... 0 ... 01
0 ... 0 ... 0

+O””” A.”” Ok
..................
0 ... A . . . On

1 . . . k . . . n

Note that the coupling impedance is given by

Zv= RV + jkuLy, A = ZYY5
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Fig. 2-dimensional circuit

Plate : 48[mm] x 50[mm]

RI = 30[ft/mm] R~l = l[fZ/mm] JZ1= 0.003~/mm]
~ml = &t)OOl~/mm] G1 = 30[S/mm] G~l = –l[S/mm]

Cl = 0.050~F/mm] C~l = –0.001~F/mm] R2 = Zoo[nfmm]

&2 = 10[$2/mm] Lz = 0.003~/mm] Lmz = O.0001~/mm]

G2 = 200[S/mm] Gm2 = -l[S/mm] C2 = 0.050~F/mm]

C~z = -0.001 ~F/mm], R,l = 10IQ/mm] L.l = 0.003~/mm]

R.z = 200[f2/mm], L.z = 0.003~/mm]

Input position (30[mm], 25[mm]), Time= 0.25[nsec]

and Ys, Ek,in are input admittance and the Fourier coef-
ficients of the input impulse.
Solving relations (10), we can estimate the coefficients
(&),-# ~)),(@2);&)) and (K~3), K$)). Thus, the

steady-state waveform at any point can be calculated by
the phasor technique.
As an illustrative example, we calculated the impulse re-
sponse on the two different plates as shown in Fig. 2. We
consider here 50 lines in Y-directions located 1[mm] each
other, and connected by RL circuit, where 11 = 30[7nln],
12= 4[7n7n]and 13 = 14[mm]. The response waveform at
0.25[nsec] has two reflections from the boundary of two
plates and the right end as shown in Fig.3.

III. CONCLUSIONS AND REMARKS

We proposed here an elegant algorithm for solving 2-
dimensional circuits based on a multi-conductor transmis-
sion line theorem. Since the transfer matrix obtained by
the use of Toeplitz’s theorem is very simple, it can be eas-
ily applied to the large scale circuits. As an illustrative
example, we solved 2-dimensional circuit composed of two
different plates. The computatiomd efficiency is largely
improved compared to the usual finite element technique.
Furthermore, the method can be also applied to solve 3-
dimensional circuits and devices. Thus, the technique will
be used for wide classes of device simulations.
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