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Abstract 

Distinguishing the stability of characteristic curves 
for nonlinear resistive circuits is requirement and im- 
portance to  design various electronic circuit exactly. 
Since every resistive element has a parasitic compo- 
nent, solutions on the characteristic curves are stable 
or unstable. In this paper, we show that the stabil- 
ity will be mainly changed at the bifurcation points 
such as limit point and branch point. Applying the 
curve tracing method, we can decide the unsta- 
ble regions on characteristic curves by the locations 
of bifurcation points. 

1 Introduction 

In this paper, we discuss the stability of the so- 
lution curves for nonlinear resistive circuits includ- 
ing parasitic elements. Although the DC solution is 
determined by analyzing the nonlinear resistive cir- 
cuit, its equilibrium point will be the one of stable 
or unstable because every resistive element has small 
parasitic elements in practice. There are some papers 
discussing the stability of nonlinear networks. In ref- 
erences [1,2], a globally asymptotically stable condi- 
tion is discussed for nonlinear dynamic networks in 
a qualitative manner. In reference [3], a simple tech- 
nique is proposed to  identify unstable DC operating 
points. Of course, the stability can be decided by 
solving the variational equation at each equilibrium 
point obtained by the DC analysis, however, that is 
very time-consuming. We show here that the stabil- 
ity is mainly changed at the bifurcation points such 
as turning and branch points [4-51 on the DC char- 
acteristic curves, so that  the stability of the solution 
curve is easily found by the locations of bifurcation 
points. 

2 Unstable regions of solution curves 

Now, consider electronic circuits containing bipo- 

lar transistors, FETs and so on. The solution curve 
can be calculated by solving a resistive circuit com- 
posed of n equations in (n  + 1) variables - 

f(x) = 0, f : R"+' -+ R" (1) 
Assume f (z) is C2 continuous in z E Rn+'. Let us 
describe the variable by x = x(s) as a function of 
arc-length s from the starting point 20. Then, the 
solution of (1) satisfies the following set of algebraic- 
differential equations [7]: 

f (x) = 0 (2.1) 
2 2 ($$+(%) +-*+(+) = 1  (2.2) 

Since the solution curve is a continuous function of 
s even at the limit point [5], we have from (2) 

(4) 
...................... 

* * *  2 E I D+) = I $f$ 

\ %  ... ds &gL/ 
Observe that the first n x (n + 1) submatrix corre- 
sponds to the Jacobian matrix of f(x),  and the last 
row shows the derivatives of the curve. Our curve 
tracing algorithm 161 efficiently traces the solution 
curve satisfying (2) . In this case, it is proved that 
whenever the rank of Jacobian matrix of f(z) is n, 
the coefficient matrix DI'(x) is nonsingular, so that 
we can trace even for the limit points [5]. Thus, we 
have the following relation by the Cramer's formula 
to ( n  + 1)th variable 

(5) 
-- dzn+l detlDnf(z)l 

d s  detlDl?(z)l 
- 
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where Dnf(x)  is the Jacobian matrix for the variable 
{ ~ 1 , ~ 2 , .  . ., xn) 
Now, assume that we have the following dynamic 
equation by considering the parasilic elements: 

dx 
at 

P- = f (x) ,  for P =  

Then, the variational equation at an equilibrium 
point x is given by 

Thus, the stability condition of the resistive circuits 
is decided by the eigenvalues of the Jacobian matrix 
DnJ(x). We have the following stability property 
around the lamat point.  

Theorem 1 If the  starta 
e, w h e n  the solution 
poin t ,  the  stahilaty as changed a t  the  point.  

nt of solution curve 

Proof: The lamat poant is a turning point such that 
the direction of the solution curve is ch 
dx,+l/ds = 0 at the point. This means th  

D n f ( x ) l  is changed after passing thr 
oint because of the nonsingularity of D r ( x )  in 

(5) [5 ] .  Here, we transform (7) as follows: 

-- - P-’Dn f ( ~ ) A X  dAx 
d t  

The eigenvalues of variational equation satisfy the 
following relation[7]: 

n 

detlP‘lD,f(x)l = detlP-lI (8) 
i=l 

We assume that detl P-’ I # 0 
bility depends on the eigenval 
&(i = 1,2, .  . . , n) are the eig 
real and/or complex conjugates. Thus, the change 
of sign ( 5 )  means that the sign of one of the real 
eigenvalues is changed after passing through the limit 
point, so that the stability is 

Next, we consider the stabilit 
around the branch bafurcataon poant [4], where two 

ross at a point. It is known 
the rank of the Jacobian matrix to  (1) 

2.L. ... 
8x1 
.......... 

... 
8x1 

&an 
ax, ax,+1 

&aln 
ax, ax,,, 

............ 

uced to  less than n. Hence, 
becomes singular at the bifurcati We have 

the follovvlng theorem around the point. 

Let  T(x) be a smooth solutaon curme 
passang through the branch hafurcataon point.  T h e n ,  
the stahalaty of solutaon 2s changed a t  the  poant. 

(9) 

sion to  dl(x,+l) at two 
points x:+~ - Axn+l and x:+l + Ax,+l before and 
after the bifurcation point x*, we have 

dl(x:+1+Axn+l) = dl  (x:+l)+d1’(5~+1)nxn+l+. ’ .  
(10.2) 

where ’ indicates the derivative with respect to  zn+1. 
At the branching point x*, the following relations 
hold [4] 

rank(Df(z*)) = n-1, dl(x:+,) = 0, dl’(xz+l) # 0 
(11) 

Multiplying the two equations in (lo), we obtain 

Thus, the sign of the denominator of (4) is changed 
whenever it passes through the point. We have the 
same result as detlDl?(x)l for 

d2(xn+1) E detID,f(z)l (12) 

because the rank of Of(.) is less than n at the bi- 
furcation point. Thus, the sign of (4) is not changed 
at the point, so that the direction of solution curve 
dx,+l/ds is never changed at tlie branch 
tion point. But the stability of t 
is changed. The instability of the e 
after the bifurcation point will be a 

As a special case, there are many s 
such as Flip-Flop circuit. In this case, they some- 
times have an interesting property such that one of 
the solution curves is symmetmc  with r 
other one. This type of bifurcation 
patchforkpoint 141. 

the same  stability passang through 
the poant. Thas as hecause that the prtchfork bifurca- 
t i on  has symmetrac solutaon curves. 

R e m a r k  In Theorem 1 and 2 ,  the instability re- 
gions are determined by investigating whether the 
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(b)Driving-point characteristic curves 

Figure 1: Two-tunnel-diode circuit 

variational equation has the positive real eigenvalues 
or not. However, it may sometimes happen that it 
has the complex conjugate eigenvalues having posi- 
tive real parts. For this kind of instability, the equi- 
librium point behaves as an unstable focal point, and 
the sign of dx,+l/ds is not changed at the bifurcation 
point. This bifurcation is called Hopf bifurcation. 

3 Illustrative examples 

3.1 Two-tunnel-diode circuit [6] 
Consider the two-tunnel-diodes circuit shown in 
Fig.l(a). Let us choose such that the normal tree 
contains vin and two tunnel diodes. Put the parasitic 
element L, into the co-tree R and Cpl, Cp2 between 
the tree diodes and ground. 

The circuit equation is given by 

where 

gl(W1) E 2.5~: - 10.5~; + 11.8t~1 

g2(~2)  0.43~: - 2.69~; + 4.56v2 

The driving point characteristic for R = 1.5, 
L, = 1 and Cpl = Cp2 = 1 is shown in Fig.l(b), 
where the dotted lines show the unstable regions. 
Observe that there are small regions of the Hopf bi- 
furcations before and after the dvin/ds < 0 regions 
in the dwi,/ds > 0. On the other hand, there is a 
closed loop (EaFb),  where the region (EaF)  is sta- 
ble and (FbE) unstable. Note that once the stability 
is checked at a point on the closed loop, the whole of 
the stability can be known by Theorem 1. 

3.2 Hopfield network 
Hopfield neural networks are sometimes applied to  
solve combinatorial problems such z1s the traveling 
salesman problem, and the layout of VLSI circuits. 
Now, consider the circuits containing 6 synapses 
whose equation is given by 

a xi 
6 dui - = w;jzj - -log - + Ii 2 1 - x i  dt j=1 

i =  1,2, ..., 6 

where 

w =  

' 0 1 -2 -2 -2 -2 
1 0 -2 -2 -2 -2 

-2 -2 0 -2 -2 -2 
-2 -2 -2 0 -2 -2 
-2 -2 -2 -2 0 1 
-2 -2 -2 -2 1 0 

I = ( 3.5 3.5 5.0 5.0 3.5 3.5 )T 

Setting dui/dt = 0, the stationary solutions are ob- 
tained. Choosing a as an additional variable, we have 
a set of 6 algebraic equations with 7 variables. The 
solution curves are obtained starting from a = 0.1 
[15]. The curves in the (xl ,z3,q)-plane are shown 
in Fig.8, where we choose a = 0.29x~+0.1. We found 
9 pitchfork points and 4 limit points. 
Note that since the coefficient matrix W is symmet- 
ric, all of the eigenvalues are real, and the equilibrium 
points belong to the nodal or saddle points. We show 
the unstable curves by dotted lines. Their stabilities 
are determined by the application of Theorem 2 aqd 
Corollary 1. 

4 Conclusions and remarks 

In this paper, the stability of DC solution curves is 
examined by introducing parasitic elements, such as 

'The example is given by Prof. A.Sakamoto at Tokushima 
university. 
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(b) Stability of the solution curve for the Hopfield netw 

Figure 2: Hopfield network 

a small capacitor between every resistor and ground, 
and inductor in series to every co-tree resistor. 

We have proved two theorems and one corollary 
which are very useful t o  check th  
solution curves. Since the 
changed at the bifurcation 
point and branch bifurcatio 
stability of solution curves without investigating the 
variational equation. 
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