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Abstract

Distinguishing the stability of characteristic curves
for nonlinear resistive circuits is requirement and im-
portance to design various electronic circuit exactly.
Since every resistive element has a parasitic compo-
nent, solutions on the characteristic curves are stable
or unstable. In this paper, we show that the stabil-
ity will be mainly changed at the bifurcation points
such as limit point and branch point. Applying the
curve tracing method, we can decide the unsta-
ble regions on characteristic curves by the locations
of bifurcation points.

1 Introduction

In this paper, we discuss the stability of the so-
lution curves for nonlinear resistive circuits includ-
ing parasitic elements. Although the DC solution is
determined by analyzing the nonlinear resistive cir-
cuit, its equilibrium point will be the one of stable
or unstable because every resistive element has small
parasitic elements in practice. There are some papers
discussing the stability of nonlinear networks. In ref-
erences [1,2], a globally asymptotically stable condi-
tion is discussed for nonlinear dynamic networks in
a qualitative manner. In reference [3], a simple tech-
nique is proposed to identify unstable DC operating
points. Of course, the stability can be decided by
solving the variational equation at each equilibrium
point obtained by the DC analysis, however, that is
very time-consuming. We show here that the stabil-
ity is matnly changed at the bifurcation points such
as turning and branch points [4-5] on the DC char-
acteristic curves, so that the stability of the solution
curve is easily found by the locations of bifurcation
points. :

2 Unstable regions of solution curves

Now, counsider electronic circuits containing bipo-
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lar transistors, FETs and so on. The solution curve
can be calculated by solving a resistive circuit com-
posed of n equations in (n + 1) variables

f@) =0, f:R™ R o

Assume f(z) is C? continuous in z € R"*!. Let us
describe the variable by z = x(s) as a function of
arc-length s from the starting point zg. Then, the
solution of (1) satisfies the following set of algebraic-
differential equations [7):

f@)=0 (2.2)

dz,\? dzs\? dTni1 2
(ds) +(Ti_s— +---+ —d'?— =1 (2.2)
Since the solution curve is a continuous function of

s even at the limit point [5], we have from (2)

dz
51
ds 0

DI(z) _,%;; = 0 _ 3

dz,.il
ds

—

DI(z) = %& ST Eﬁf— @

dz dz dz
ds ds ‘ds

Observe that the first n x (n -+ 1) submatrix corre-
sponds to the Jacobian matrix of f(z), and the last
row shows the derivatives of the curve. Qur curve
tracing algorithm [6] efficiently traces the solution
curve satisfying (2) . In this case, it is proved that
whenever the rank of Jacobian matrix of f(z) is n,
the coefficient matrix DT'(x) is nonsingular, so that
we can trace even for the limit points [5]. Thus, we

have the following relation by the Cramer’s formula
to (n + 1)th variable :

drnyy _ det|D, f(z)]
ds+ "= det|DT(z)) (®)
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where D f(x) is the Jacobian matrix for the variable
{z1,22,...,2Zn} '
Now, assume that we have the following dyna,rmc
equation by considering the parasitic elements:

dz 'Cp

point z is given by

P = D @A (0

Thus, the stability condition of the resistive circuits
is decided by the eigenvalues of the Jacobian matrix
D, f(z). We have the following stability property
around the limit poini.

Theorem 1 If the starting poini.of solution curve
15 stable, when the solution curve has passed through
a limit point, the stability is changed at the point.

Proof: The limit pownt is a turning point such that
the direction of the solution curve is changed and
dzn41/ds = 0 at the point. This means that:the sign

of det|D,, f(z)| is changed after passing through the -

limit point because of the nonsingularity of DI'(z) in
(5) [5]. Here, we'transform (7) as follows:

dAz
dt

= P7iD,f(z)Az

The eigenvalues -of variational veqhation satisfy the
following relation][7]:

detlPDaf(e)] = detl P[0 (®)

We assume that det| P! | # 0 holds, so that the sta-
bility depends on the.eigenvalues of .D,, f(z), where
M5 = 1,2,...,n) are the eigenvalues composed of
real and/or complex conjugates. Thus, the change
of sign (5) means that the sign of one of the real
eigenvalues is changed after passing through the limit
point, so that the stability is changed. * o
Next, we consider the stability of the solution curve
around the branch bifurcation point [4], where two
solution curves cross ‘at a point.

{w1,332, . wn+1}
- dzq LN O ny1
Dffe)=| ..o,
ofa LYY
Oz Oz p Oz pt1

is-reduced to less than n.- Hence; the matrix DT'(z)
becomes singular at the bifurcation‘point. We have *

P_d—t = f(w)," for P = ( ; V’I?p‘ ) ‘k (6) o

Then, the variational equation at an eqﬁilibfium '

It is known -
that the rank of the Jacoblan matrix to (1) for

“the following theorem around the point.

Theorem 2 Let T'(z) be a -smooth solution curve
passing through the branch bifurcation point. Then,
the stabzhty of solutwn 28 chcmged at the pomt

Proof' For 51mp11c11:y, put

d1 (€n41) = det| DT(z)| 9)
Now, applying Taylor expansion to dy(z,41) at two
poi.nt‘s Zh oy — AZnyy and 37,7 + Ay before and
after the bifurcation point «*, we have

d1 (251 = A%n41) = di(2h41)—d1 (2741) Apia+- -
(10.1)
Ay (@1 +AZn11) = di (@) i (Fh41) ALngr+- -
(10.2)
where ! indicates the derivative with respect to z,41.
At the branching point z*, the following relations:
hold [4]

rank(bfcé*» e, dy(onyy) =0, d/(shee) 0.
(11)

Multlplylng the two equationsin (10), we obtain

'd(vn+1

," ‘[dl (%H)] AL

Thus, the' sign’of the denominator of (4) isi changed
whenever it passes through the point.. We: have the
same result as det|DI'(z)| for ~

Al’n—}-l)dl( nt1 T Aiv.nﬂ-l)

do(zny1) = det| D, f(2)] S (12)
because the rank of Df(x) is less than n at the bi-
furcation point. Thus, the sign of {4) is not changed.
at the point, so that the direction of solution curve
dz,q1/ds is never changed at the branch: bifurca-
tion:point. But the stability of the solutlon curve
is .changed. The instability of the equilibrium point
after the bifurcation point will be a saddle type. -
n

As a special case, there are many symmetric circuits.
such as Flip-Flop circuit. In this case, they some-
times have an interesting ‘property such that. one of
the solutmn curves is .symmetric with respect. to an-
other one.  This type of bifurcation is termed as
pitchforkpoint [4].

Corollary 1. At a pitchfork point, one of the so-
lution curves Qhanges the stability at the point, while
the others remains the same stability passing through
the point, This is because that the pitchfork bifurca-
tion has symmetric solution curves. '

Remark: In Theorem 1 and 2, the instability re-
gions are determined by investigating whether the -
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(a)Two-tunnel-diode circuit
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(b)Driving-point characteristic curves

Figure 1: Two-tunnel-diode circuit

variational equation has the positive real eigenvalues
or not. However, it may sometimes happen that it
has the complex conjugate eigenvalues having posi-
tive real parts. For this kind of instability, the equi-
librium point behaves as an unstable focal point, and
the sign of dz,, 11 /ds is not changed at the bifurcation
point. This bifurcation is called Hopf bifurcation.

3 Illustrative examples

3.1 Two-tunnel-diode circuit [6]

Consider the two-tunnel-diodes circuit shown in
Fig.1(a). Let us choose such that the normal tree
contains v;, and two tunnel diodes. Put the parasitic
element L, into the co-tree R and Cpy, Cp2 between
the tree diodes and ground.

The circuit equation is given by

. d’vc 1 .
Cp1 dtp =i—g1(v1)
dv,
Cp2 ‘;?2 =0 (171) - yz(vz)
di .
Lpg;- = vin — (v1 +v2) — Ri

where
gi1(v1) = 2.503 — 10.507 + 11.8v;
g2(v2) = 0.43v3 — 2.6902 + 4.560,

The driving point characteristic for R = 1.5,
L, =1 and Cp = Cpz = 1 is shown in Fig.1(b),
where the dotted lines show the unstable regions.
Observe that there are small regions of the Hopf bi-
furcations before and after the dv;,/ds < 0 regions
in the dv;,/ds > 0. On the other hand, there is a
closed loop (FaFb), where the region (EaF) is sta-
ble and (FbE) unstable. Note that once the stability
is checked at a point on the closed loop, the whole of
the stability can be known by Theorem 1.

3.2 Hopfield network

Hopfield neural networks are sometimes applied to
solve combinatorial problems such as the traveling
salesman problem, and the layout of VLSI circuits.
Now, consider the circuits containing 6 synapses
whose equation is given by 2

du.
= —Zw,Ja:J —2—log1_ + I;

J=1
t=12,...,6
where
60 1 -2 -2 -2 -2
1 0o -2 -2 -2 -2
W = -2 -2 0 -2 -2 -2

-2 -2 -2 0 -2 -2
-2 -2 -2 -2 0 1
-2 -2 -2 -2 1 0

I = (35 35 50 50 35 35)7

Setting du;/dt = 0, the stationary solutions are ob-
tained. Choosing a as an additional variable, we have
a set of 6 algebraic equations with 7 variables. The
solution curves are obtained starting from a-= 0.1
[15] The curves in the (z1,z3,27)-plane are shown
in Fig.8, where we choose a = 0.29z7+0.1. We found
9 pitchfork points and 4 limit points.

Note that since the coefficient matrix W is symmet-
ric, all of the eigenvalues are real, and the equilibrium
points belong to the nodal or saddle points. We show
the unstable curves by dotted lines. Their stabilities
are determined by the application of Theorem 2 and
Corollary 1.

4 Conclusions and remarks

In this paper, the stability of DC solution curves is
examined by introducing parasitic elements, such as

2The example is given by Prof. A.Sakamoto at Tokushima
university.
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(a) A Hopfield network
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(b) Stability of the solution curve for the Hopfield network

Figure 2: Hopfield network

a small capacitor between every resistor and-ground,
and inductor in series to every co-tree resistor.

We ‘have proved two theorems 4nd one corollary:
which are very useful to check the stability of the
solution curves. Since the stability will ‘be mainly
changed -at the bifurcation points ‘such as a limit
point and branch bifurcation point, we can‘know the
stability” of solution curves W1thout mvestlgatmg the
variational equation. v
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