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ABSTRACT
We discuss a numerical method for solving the

nonlinear transmission lines by the frequency-domain
perturbation method. To improve the convergence,
we introduce two new methods of the compensation
and the homotopy techniques, which also help to make
the iteration stable. This kind of transmission lines
is widely used in the communication curcuits such as
GaAs integrated circuits, and varactor diode circuits.

1. INTRODUCTION
Nonlinear devices such as GaAs nonlinear trans-

mission lines [1], varactor diodes and superconducting
transmission lines [2] have the nonlinear capacitors.
The velocity of traveling wave is given by

v = l/~m

so that if the capacitor is a decreasing function of the
voltages, it will have an interesting property such that
the higher part of the waveform is the faster than the
lower part of it. The property is used in many purposes
such as the picosecond pulse compression [1], picosec-
ond shock-wave generations [3] and so on.
There are some papers discussing the phenomena from
the physical points of view [1-5]. In reference [6], the
shock-waves of nonlinear transmission line driven by a
sinusoidal generator are analyzed by the harmonic bal-
ance method, where the nonlinear transmission line is
replaced by the finite number of the discrete lumped
models. The reference [7] has analyzed the phenomena
by the application of the difference approximation to
the nonlinear partial differential equation. In reference
[8], they have analyzed the nonlinear wave propagation
phenomena, where the 2-dimensional FFT is applied
to solve the circuit equation in the distance and time.

In this paper, we discuss an efficient numerical
method for solving the nonlinear transmission lines.
The waveform is approximated by the Fourier expan-
sion at each point on the line, and the coefficients are
calculated by a perturbation technique. Although, the
method is only applied to the weakly nonlinear sys-
tems, we have improved it with two techniques of a
compensational and homotopy method.

2. FREQUENCY-DOMAIN
PERTURBATION METHOD

2.1. Perturbation Method Now, consider a non-
linear transmission line terminated by linear subnet-
works. The circuit equation is described by the follow-
ing nonlinear partial differential equations:

au 6’@L
= ~+?lR, ‘: f?qc

–z
=~+iG (1)

where ~L and qc are the flux of a nonlinear inductor
and the charge of a nonlinear capacitor. We assume
the characteristics as follows:

iL = r@L+ ~~L(f#L), ~R = RiR + 6~R(iR) (2.1)

uc = Sqc + 6~C(q~), iG = GVG + 6;G(VG) (2.2)

where e means a small constant, and ;L (#L), ~R(iR),
tic(qc) and ;G(vG) are nonlinear terms. We have the
relations of i s iL = i~ and v a vc = ‘VG.

To analyze the traveling-waves, consider the re-
sponses of nonlinear transmission lines driven by an
impulse waveform as follows:

21w’r
e(t) = Em sin(—ql t) :0+

:&<T (3)

where T is a period of the impulse and k is an in-
teger. Assume that the nonlinear transmission line
is terminated by a linear impedance ZL. Then, the
circuit equations (1) and (2) are mathematically re-
duced to the nonlinear partial equations constrained
by a linear boundary condition. In this paper, we ap-
ply the frequency-domain approach, and describe the
input impulse waveform by the Fourier expansion in
the complex domain as follows:

M
27i

e(t) = ~ l?~e~kwt, ~=—
T

(4)
k=-M
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for a sufficiently large M. Now, let us assume the so-
lutions at the mth iteration as follows:

M M

Vm(x, t)= ~ Vkmt?iktit,im(x, t) = ~ I~eikWt
k=-M k.-hlf

(5.1)
M M

(5.2)
Then, we have the following perturbed equations:

dVkrn
— = -(R+ jkwL)Ip

dx

(‘6 vR,k(im–l) - jk@,&#~-’)) (6.1)

dI~
— = -(G+jk@Vk”
dx

(‘~ iG,~(tJm-l) - jkLLL’VC,,(g:-’))(6.2)
where L = I/I’,C = 1/S and

(6.3)

QY = c (Vkm–&c,k(&l)) (6.4)

Observe that the relations (6.1) and (6.2) are ordi-
nary differential equation, and the second terms at the
right hand side correspond to the forced terms calcu-
lated at (m – l)th iteration. The solutions of (6.1) and
(6.2) are written as follows:

where the propagation constant ~k and characteristic
impedance i?k,o are given by

& = I/(jkwL + R)(jkJC + G),Zk,o =
/

jkwL + R

jkwCi-G

The first two terms of (7) correspond to the zero-input
responses, and ftikm(x) and @(x) to the zero-state
responses calculated by a numerical integration tech-
nique. The constant parameters A~ and B~ in (7) are
evaluated by the boundary conditions of the transmis-
sion line. Thus, all of the Fourier coefficients Vjm and
IF are calculated, and ~~ and Q~ are decided by
(6.3) and (6.4). The iteration is continued until the
variation

am= [ ~ (vkm(z)-v~-’(z))’
Lk=-M

1/2

+ 5 (rw – qwl))’ 1
(8)

k=– M 1

becomes sufficiently small for given a constant 6, How-
ever, we can not say anything whether the solution
waveform is sufficiently accurate or not.

Now, let us define the following residual error. The
solutions for the M frequency components be v~ (x, t),
iM (x, t), Then, define the residual error as follows:

[J{IT

‘M= To
(~M(x, t) - ti(X,t))2

+ (i~(x, t) - ~(x,t))’} dt] 1’2 (9)

where O(X,t),;(z,t) are the exact solutions, and
‘u~ (x, t), iM (x, t) are the approximate solutions at
rnth iteration with M frequency components. Since
it is impossible to get the exact solutions in (9), we as-
sume the solutions obtained with the larger frequency
components &l’as the exact solutions.
The residual error (9) between the solutions with M
and M’ frequency components are given by

&J/f =

[

~ (Vfyl)
lkl=M

+ S (Ip(l:

Ikl=kf

- w-w’

1
1/2

-r(o)’

If the residual error EM is not so small, we need to
choose much larger M for the waveform approxima-
tion, and again repeat our perturbation method.

2.2+ Modified Perturbation Method It is said
that the perturbation method is only applied to the
weakly nonlinear circuits. In this section, we will mod-
ify the method such that it can be applied to the much
stronger nonlinear circuits. Assume that the nonlin-
ear characteristics given in (2) are monotone increasing
functions, and for simplicity, describe it as follows:

U1= HU2 + e~(u’), H = diag(r, R, S, G) (lo)

where U1= (iL, v~, VG,iG)~, u’ = (@L, iR, qc, ~G)~

and ~fi(~’) = ~ (;L(#L),i~(i~), ti~(q&G(@))T.

Since the convergence of our perturbation method
largely depens on the magnitude of perturbed terms
~~(u2), we need to decrease it compared with the lin-
ear term. Thus, we introduce small constant

AH E diag(AI’, AR, AS, AG)
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as a compensation parameter in the following form:

ul = (H + AH)u2 + (et(u~) - AHu~) (11)

The second term is the nonlinear function correspond-
ing to the perturbed term which can be be largely
decreased by choosing a suitable AH. We found from
our numerical examples that the convergence ratio is
largely improved by introducing of the compensation
parameter,

Homotopy method is sometimes used when the it-
eration method does not guarantee the convergency.
We will apply it to our perturbation method. Let us
introduce a parameter p for the nonlinear elements (2).

U1 = (H+ AH)uz + ~(6k(UZ) - AHuz),

p:o+l (12)

It is clear that the relation (12) for p = O corresponds
to linear elements, and the nonlinearity is gradually
increased by choosing {p :0- 1}. At p = 1, it re-
duces to the original function. If we choose a small
variation Ap per iteration such as

Pm = Pm-l + AP

our perturbation can also get the solution stablely.
2.3. Convergence Condition Now, let us consider
the convergence condition of our algorithm. For sim-
plicity, let us introduce the following symbols for vari-
ables in (6) and (7):

(a). For the solutions, we set

(b). For the perturbed terms, we set

Xz,k(tup, Z) = ({L,k(#~-l)

vc,k(#rl)

where WI = (v, i)~, W2 = (d~, qc)T.

Set the coefficient matrices of (6) as follows:

Ah =
(

o R+ jkwL
G + jkwC O )

ly(z)

QT(x) )

)
)

L
o )

Now, describe the zero-state response of (7) in the in-
tegration form.

xy~(z) = cl,k(x)Ek+c2,k(z)xl,kxyJi)

/

x

–,’ik(Z-s)jl,k( w~-l, s)ds—c e
o

/

z

-@k (?
-AJJZ-S)&k(qn-l, s)dS (13.1)

o

xflh(~) = c“xfl~h(~) – d“xz,h(lo~-l, $) (13.2)

where Cl ,h(a), Cz,,$(a) are decided from the bound-
ary conditions ancl (7).
Let us adopt the following norm

/1II w II= 1 ~w2(t)dt
?0

(14)

Then, we have the following convergence conditions.
Theorem: Assume that, for an approximate solution
(w?, w~)T, there are constants D1 ,D2, Ko, L1 and Lz
satisfying as follows:

(i)

(ii)

(iii)

(iv)

Define the solution domain by:

[1w, -w: II<D2} (15.1)

Define norms of the coefficient matrices by:

Assume the perturbed terms satisfy the follow-
ing Lipschitz conditions:

(1&(W;, X) -XZ(W;, X) It< L2 IIW; - W; II
(15.3)

for all O ~ x ~ 1,where L1 and Lz are Lipschitz
constants.

Set the maximum values of the variables in
z = [0, 1] as follows:
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Furthermore, if it satisfies the condition,

KR,[IFII<l (15.5)

forP =
(

A-1 Kz
A-(jKl K&!(K2 + Lz) )

our perturbation method (13) will converge to the
unique solution (wY, W2M)T.
We found from the theorem that our perturbational
iteration will be converged to an approximate solution
XmI (/) if the nonlinear term e is small.

3. ILLUSTRATIVE EXAMPLES

As an example of the nonlinear transmission line,
let us consider to analyze the shock-wave to an impulse
response. Assume the transmission line is terminated
by a resistor RL = 10 and

i~ = 350 x @l@L, w~ = o,o15iR + o.li~

vc = lollqc + 0.5 X 1034q:, iG = 0.015~G + O.lv~

For the input impulse, we choose Em = 0.25, T = 1
and k = 16 in (3). We found from the example that
our perturbation method is largely improved by the
combinations of compensation method and homotopy
method,

4. CONCLUSIONS AND REMARKS

We have presented a frequency-domain perturba-
tion algorithm for calculating transient responses of a
nonlinear transmission lines. We can largely improve
the convergence by introducing two methods of the
compensation method and homotopy method.
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Figure 1: Convergence ratios for various

compensational parameter, where variation
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Figure 2: Impulse responses

(a) The response of nonlinear transmission line (b) The

response of linear transmission line where nonlinear terms

are set to be zeros (c) Input impulse
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