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ABSTRACT chaotic circuits coupled by one resistor. By carrying out 

that  our very simple coupled circuit can exhibit spatiotem- 
poral chaos as well as quasi-synchronizations of chaos in 
spite of tha t  the number of chaotic subcircuit.s is only 
four. We consider that  our model would be good model 
to  clarify mechanism and characteristics of spatiotempo- 
ral chaos because it is the simplest real physical system 
exhibiting spatiotemporal chaos. Further, we would like 
to  emphasize that  all phenomena introduced in this paper 
have been observed from real physical circuit model made 
UP easily in the laboratory. 

In this study, four simple autonomous chaotic circuits cou- computer calculations and circuit experiments, we found 
pled by one resistor are investigated. B~ carrying out 
computer calculations and circuit experiments, it is shown 
that our very simple coupled circuit can exhibit spatiotem- 
poral chaos as well as quasi-.synchronizations of chaos in 
spite of that the number of chaotic subcircuits is only four. 

I. INTRODUCTION 
Many nonlinear dynamical systems in the various fields 
have been clarified to  exhibits chaotic oscillations and re- 
cently applications of chaos to  engineering systems attract 
many researchers' attentions, for example: chaos noise 
generator, control of chaos, synchronization of chaos, and 
so on. Among the studies on such applications, synchro- 
nization of chaotic systems or signals is extremely interest- 
ing [1~N[31, because the chaotic solution is unstable and 

goes. As far as we know, such phenomena have been 
firstly reported to  be genareted in simple real circuits by 
a group of Saito [l]. Since Pecora e t  al. have investi- 
gated such phenomena theoretically [3]. many papers have 
been published until now. Further, secure communica- 
tion systems using chaos synchronizations [4][5] and cou- 
pled chaoptic circuits generating various types of quasi- 
synchronizations [6]-[8] are also proposed. 

On the other hand, a network of chaotic one- 

Kaneko [9]-[12]. He has discovered varios kinds of phe- 
nomena called as spatiotemporal chaos such as diffusion 
and Brownian motion of defect, clustering, spatiotempo- 
ral intermittency and so on. Recently, Chua and his col- 
leagues published their papers on spatiotemporal chaos 
observed in a chain of coupled Chua's circuits [13][14]. 
However, they treated only the parameter sets for which 
each Chua's circuits generate simple one-periodic attrac- 
tor. The study of such systems are very important not 
only as models for nonlinear systems with many degrees 
of freedom, but also for the clarification of biological in- 
formation processing and for engineering applications. 

In this study, we investigate four simple autonomous 

11. CIRCUIT MODEL 
Circuit model is shown in Fig. 1. In our system four same 
chaotic circuits are coupled by one resistor. Each chaotic 
subcircuit is a symmetric version of the circuit model pro- 

small error of initid values must be expanded w time Posed Inaba et ". [151. It consists Of three 
L1 

dimensional maps have been investigated earnestly by 
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Fig. 1 Circuit model. 
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elwnents, one linear negative resistor and one nonlinear re- 
sistor, which is realized by connecting some diodes, and is 
one of the simplest chaotic circuits. Fig. 2 shows a typical 
exaiiiple of chaotic attractors obtained from the uncoupled 
chaotic subcircuit. In the following circuit experiments, 
the values of the inductars and the capacitor in each 
chaotic subcircuit are fixed arid those values are measured 
as L1 = 204.15mH f 0.073%, Lz = 9.9331nH f 0.030% 
and C = 0.03425pF f 0.29%. 

Fig. 

At 
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2 Typical example of chaotic attractors observed 
from the chaotic subcircuit. (a) Computer calcula- 
tion for a = 24.0 and /3 = 0.295. (b)  Circuit ex- 
periment fot L1 = 204.15?nH, L2 = 9.933mH, C = 
0.03425pF and T = 630R. Horizontal: 0.4mA/div. 
Vertical: 1 \-/div. 

first, we approximate the i - U characteristics of 

For comput,er calculations, in order to  consider the dif- 
ference of real circuit elements, (4) is rewritteu as follows. 

n 
$k = P(.z'k + Y k )  - Zk - y Zk 

21; = (1 + (IC - l ) A W } ( X k  + Y k )  

( k 1 ,  2, 3, 4). 

( 5 )  ]=1 
i k  = a { P ( X k  -k y k )  - z k  - f ( 2 / k ) }  

In the following computer calculations, we fix the param- 
eter cv as 24.0 and ( 5 )  is calculated by using the Runge- 
Kut ta  method with step size At = 0.01. 

III. IN A N D  OPPOSITE-PHASES 
QUASI- SY N C € I  RO N I Z AT1 0 N 

Before we treat spatiotemporal chaos, we introdlice two 
types of quasi-synchronizations of chaos in this section 
and next one. 

Fig. 3 shows an example of in and opposite-phases 
quasi-synchronizations. In this case, each suhcircuit ex- 
hibits chaos as Fig. 2. But, two of four subcircuits are 
almost synchronized a t  the in-phase and the rest is al- 
most synchronized to  the two subcircuits with K phase 
difference. Namely, phase difference with respect to  the 
subcircuit 1 is described as { T .  0, T }  for the example in 
Fig. 3. Though we omit other phase states in Fig. 3, there 
coexist more two different Dhase states. n a m e h  to. K .  T I  

" I ' , ,  

the nonlinear resistor consisting of diodes by the following and { T ,  T ,  0). 

By changing the variables and parameters, 1 3, 
;. ._ d (4 * 

(2) is normalized as Fig. 3 In and opposite-phases quasi-synchronization. 
(a) Computer calculation for /3 = 0.29, y = 0.40 and 
Aw = 0.0. (b) Circuit experiment fot T = 5700 and N 

X.k =: P ( X k  + Y k )  - z k  - Xk R = 2.4k0. Horizontal and I'ertical: 0.4niA/div. 

I v .  T W O  PAIRS OF OPPOSITE-PHASES 
QUASI-SYNCHRONIZATION 

Fig. 4 shows a n  example of two pairs of opposite-phases 
quasi-synchronizations. In this case, subcircuits 1 and 2 
are almost synchronized at the opposite-phase. Also sub- 
circuits 3 and 4 are almost synchronized at the opposite- 
phase. However, a pair of subcircuits 1-2 and the ot,her (4) 
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pair of 3-4 are independent. ?I-e had coiisideied that 
therr coexist more two different phase states. namely 
(1-3, 2-4) and  {1-4. 2-3). However actually the com- 
bination of the  decoupiing into two pairs is decided by the 
slight difference of real circuit elements and other com- 
bination states cannot be observed. Namely. this quasi- 
synchronization is based on the asynirnetry of the coupling 
and  cannot be generated in the case of conipletely sym- 
metric coupling as A w  = 0.0. '&'e consider that this phe- 
nomenon is deeply related with the clustering [12]. How- 
ever we do  not call this phenomenon as spatiotemporal 
chaos because the spatial pattern is always the same. 

Fig. 5 Spatio-temporal chaos: Self-switching of in 
and opposite-phases quasi-synchronizations. T = 

1x3 630R and R = 1.3kR. Horizontal and Verti- 

-1, -3 1, -13 
Fig. 4 Two-pairs of opposite-phases quasi-synchroniza- 

tion, (a) Computer calculation for 3 = 0.295, 
y = 0.340 and A w  = 0.01. (b)  Circuit experiment 
fot T = 580R and R = 850Q. Horizontal and Verti- 
cal: 0.4mA/div. 

V . SPAT I OT EM P o R A  L c H AOS 

For large region in parameter space. we observed complex 
chaotic motion. Namely, we observed that three phase 
states of in and opposite-phases quasi-syncliroiiizatioiis 
are switched automatically and randomly a s  shown in 
Fig. 5. The order of the appearance of three phase states 
is truly unpredictable. Further switching period is also 
chaotic, namely a state may be switched to  the next 
state instantly and a state may be switched after about a 
few second. We also observed similar self-switching phe- 
nomenon of three phase states of two pairs of opposite- 
phases quasi-synchronizations as shown in Fig. 6. We can 
call these phenomena as saptio-temporal chaos because 
spatial pattern corresponding to tliree synchronization 
states changes chaotically as time goes and it is caused 
by the local chaotic motion of subcircuits. 

In order to investigate such phenomena. we define the 
Poincar6 section as i l  = O where d q / d t  > O and plot 
the values of xi ( i= l ,  2, 3, 4)  011 IC; - n. (n denotes the 
number of iteration of the PoincarC map) plane when the 
solution hits the Poincar6 section. Fig. 7 shows time se- 
ries of attractors corresponding to the self-switching of 
in and opposite-phases quasi-synchronizations. For exam- 
ple, phase state of (.. ., 0) appears in the shaded area. 

cal: l.OmA/div. 

3 3 

Fig. 6 Spatio-temporal chaos: Self-switching of two- 
pairs of opposite-phases quasi-synchronizations. 
r = 630R and R = 960. Horizontal and Verti- 
cal: l.Om.4/div. 

x1 

0 5oooO 
--+ n: iteration 

Fig. 7 Spatio-temporal chaos: Self-switching of in and 
opposite-phases quasi-synchronizations. p = 0.295, 
y = 0.10 and Aw = 0.0. 
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[n the figure we can confi mi that  three phase states appear 
chaotically. Fig. 8 shows time series of attractors corre- 
sponding to  the self-switching of two-pairs of opposite- 
Iphases quasi-synchronizations. For example, phase state 
o f  {1-4, 2-3) appears in the shaded area. In the figure 
we can confirrn that  three phase states appear chaotically. 

X1 

--+ n: iteration 
Fig. 8 Spatio-temporal chaos: Self-switching of two- 

pairs of opposite-phases quasi-synchronizations. 
p = 0.295, y = 0.01 and A w  = 0.0. 

Because of the limited space, we cannot explain detailed 
results on the effect of AIJ. But we confirmed that  both of 
the appearing frequency and switching speed are deeply 
related with the value of A w .  We show one example in 
Fig. 9. 

1 1  

~~~~ ~ ~ 

0 30000 

Fig. 9 Effect of the value of Au. /3 = 0.295, 7 = 0.10 
-+ n: iteration 

and A ~ J  = 0.005. 

Further we confirmed that  intermittency of one subcir- 
cuit sometimes causes bi-eakdown of a spatial pattern. 

VI.  CONCLUDING REMARKS 
In this study, we investigated four simple autonomous 
chaotic circuits coupled by one resistor. By carrying out 
computer calculations and circuit experiments, we found 
that our very simple coupled circuit can exhibit spatiotem- 
poral cliaos as well as two types of quasi-synchronizations 
of cliaos in spite of that  the nuniber of chaotic subcircuits 
is only four. We wolud like to  emphmize again that the 
circuit model in this article is the simplest real physical 
systems exhibiting spatiotemporal chaos. 

Our future research is theoretical approach to spa- 
tiotemporal chaos including statistical s tudy and exten- 

sion to large number of circuits case or another coupling 
structures case. 
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