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1 Introduction

Chaotic phenomena have been drawing an extensive attention in various fields of natu-
ral science [1]. In the study on autonomous chaotic circuits, three-dimensional systems
liave reasonably well investigated and recently four or higher-dimensional systems attract
our attentions [2]. A coupled system of some chaotic circuits is an example of higher-
dimensional systems. Although there have been a few studies on coupled chaotic circuits
[3], mathematical treatments seem to be almost impossible and very suggestive results
have not been reported. Since mathematical theory for higher-dimensional dynamical sys-
tems has not been well established, we should pay our attentions to a subject of interest
when we analyze nonlinear phenomena in such higher-dimensional systems.

On the other hand, coupled oscillator circuits are one of good models of some kinds
of physical, chemical or biological systems. Therefore, it is important problems to clarify
various nonlinear phenomena observed in coupled oscillator circuits. There have been
many investigations of mutual synchronization of oscillator circuits ([4][5] and therein).
We have also investigated synchronization phenomena observed from N oscillators with
tlie same natural frequency mutually coupled by one resistor [6]. In the system various
synchronization phenomena can be stably observed, because the system tends to minimize
the current through the coupling resistor. Especially, we have confirmed that N-phase
oscillation (N = 2 ~ 13) can be stably excited for the case that the nonlinearity of
each oscillator is strong. Since there are many real physical oscillators exhibiting chaotic
oscillations, it is interesting to investigate what kind of phenomena are observed from
coupled chaotic circuits.

In this study, we fix our eyes upon synchronization phenomena of chaotic signals ob-
served in a coupled chaotic circuits. The synchronization of chaotic systems is extremely
interesting, because in chaotic systems a slight difference of initial values or parameter
values leads two same orbits to entirely different ones. Several studies on synchronization
of chaotic systems liave been reported [7]-[9] and excellent results have been obtained.
However, in such systems a chaotic signal of drive system is injected to response system.
Therefore, the systems are essentially different from mutually coupled systems. We inves-
tigate synchronization phenomena observed from two or three chaotic circuits coupled by
one resistor. Each chaotic circuit is proposed by Inaba and us [10] and this is one of the
simplest autonomous chaotic circuits. We carry out circuit experiments and computer
calculation and confirm the following.
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1. When 2 chaotic circuits are coupled, two systems are synchronized at the opposite
phase.
2. When 3 chaotic circuits are coupled, almost three-phase oscillation can be stably
excited.
It should be noted that the signal obtained from each circuit is chaotic even if the above
synchronizations occur. We also confirmed that the similar results can be observed from
the same type of coupled systems consisting of another other chaotic circuit. Hence, this
phenomenon is not considered to be generated for special type of chaotic circuits.
Although each circuit is generating chaos, these chaotic signals are almost synchronized
each other. The explication of mechanism of this extremely interesting result seems to be
very difficult. However, the result would give the effective suggestion to make clear the
nonlinear phenomena in higher-dimensional systems.

2 Circuit Model

The circuit model is shown in Fig. 1. In our system N same chaotic circuits are coupled
by one resistor. Each chaotic circuit is symmetric version of the circuit proposed by Inaba
and us [10] and it consists of three memory elements, one linear negative resistor and one
nonlinear resistor. Fig. 2 shows an example of chaotic attractors obtained from this
chaotic circuit. In the following, the values of the circuit elements in each chaotic circuit
are fixed to the values in Fig. 2.

At first, we approximate the ¢ — v characteristics of the nonlinear resistor consisting
of diodes by the following function.

vg(i) = VTalk. (1)

By changing the variables,
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Fig. 1 Circuil model. C =0.034pl", 1 =7908).
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the equation governing the circuit in Fig. 1 is represented as follows,

T = /3(-Tk+yk)_zk_7§:$k

ho = alBlet ) — 2 — )} (k=12 ) ®)
2k = Tt Yk

wliere

flye) = Yy (4)

For computer calculations, in order to consider the difference of reat circuit elements,
(3) is rewritten as follows.
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Fig. 3 Circuit experimental results for N =2
(L) = 204mH + 0.5%, L, =9.9mH +£02%, Fig. 4 Computer calculated results for N = 2
C =0.034uF £1.0%, r=7900+0.8%). (=120,8=0.3, Awy =0, Awy = 0.01).
(a) R =09, (b) R =188.50, (¢) R = 4656 (a) 7 =0,(b) vy =001, (c) v =0.2.
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3 Synchronization of Chaotic Signals

At first, we consider the case of N = 2. Fig. 3 shows circuit experimental results. As R
increases, two chaotic signals /) and I, become to be synchronized at the opposite phase.
When R = 465Q; in Fig. 3(c), two signals seem to be completely synchronized. However,
if we observe I; vs. v or I, vs. vp, we can see the chaotic attractor which is the same as
that in Fig. 2. Fig. 4 shows the corresponding numerical results obtained by using the
Runge-Kutta method. Similar results are obtained by computer calculations.

Next, we consider the case of N = 3. In this case, two types of almost three-phase
oscillation can be stably excited. Figs. 5 and 6 show circuit experimental results. In
Fig. 5 the phase of each waveform is ordered as (I, I, I3). In Fig. 6 the phase of each
waveform is ordered as (I, I3, I;). According to the initial conditions, one of two states
can be observed. In the case of V = 3, Lissajous figure is not a definite ellipse. Namely,
almost three-phase oscillation simultaneous oscillates irregularly. Figs. 7 and 8 show
numerical results corresponding to Figs. 5 and 6, respectlvely The almost three-phase
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Fig. 5 Almost 3-phase oscillation : (13, I, I3)
(L) = 204mH £ 0.5%, Lo =99mH x 0.2%,
C = 0.034uF £1.0%, r=790Q+08%, R=61.10Q).
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Fig. 6 Almost 3-phase oscillation : (1, I3, I2)
(parameter valucs arc the same as those in Fig. 5).

_4)1‘ ~o
— X~

2
%
1

0

~2 2 -2 Sy 2 4’1‘
Fig. 7 Computer calculated results Fig. 8 Computer calculated results
corresponding to Fig. 5. corresponding to Fig. 6.

(=20, =03, v=002 Aw, =0, Awy = 0.005, Awy = 0.01)
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oscillation can be also confirmed by computer calculations.

When N > 4, the system in Fig. 1 cannot be synchronized. Even in the case of
the coupled oscillators [3], four or more oscillators with weak nonlinearity cannot be
synchronized. Therefore, the chaotic circuit generating substantially sinusoidal waveform
is difficult to be synchronized for the case of N > 4.

4 Another Example

We carry out circuit experiments for the case of another chaotic circuit in order to confirm
that the synchronization phenomena observed in the previous section are not special
example. The circuit model is shown in Fig. 9(a). In this system, each chaotic circuit is
asymmetric version of the circuit proposed by Yamamoto and us [11][12] and it exhibits
chaos as shown in Fig. 9(b).

Figs. 9(c) shows circuit experiments for the case of N = 2. This chaotic circuit
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Fig. 9 Another example. 2 (d) (V. Vs W)

(a) Circuit model.  (b) Chaos from cach circuit.
(¢) Experimental results for N = 2. (d) Almost 3-phase oscillations for NV = 3.
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cannot be synchronized at the opposite phase completely. Namely, almost opposite phase
synchronization occurs. This is considered to be due to the asymmetry of the circuit.

Figs. 9(d) shows circuit experiments for the case of N = 3. In this case, almost
three-phase syunchronization which is similar to the results in the previous section can be
observed.

5 Conclusions

In this study, we have investigated synchronization phenomena of chaotic signals observed
in a coupled chaotic circuits; two or three chaotic circuits are coupted by one resistor. We
carry out circuit experiments and computer calculation and confirm the following.
1. When 2 chaotic circuits are coupled, two systems are synchronized at the opposite
phase.
2. When 3 chaotic circuits are coupled, almost three-phase oscillation can be stably
excited.
Although each circuit is generating chaos, these chaotic signals are almost synchronized
each other. This result is extremely interesting and would give the effective suggestion to
make clear the nonlinear phenomena in higher-dimensional systerns.
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