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ABSTRACT:In this article, an extremely simple LCR os- 
cillator with a hysteresis inductor is analyzed. It is of great in- 
terest that this two-dimensional autonomous circuit generates 
chaos. This circuit is described by second order differential 
equation piecewisely. Therefore, the Poincark map can be de- 
rived as one-dimensional map strictly. For this PoincarC map 
the parameter region for which chaotic attractors are gener- 
ated is obtained under simple assumption where the definition 
of chaos is that Poincark map possesses the unique absolutely 
continuous invariant measure. 

can be derived as one-dimensional map strictly. For this 
Poincark map we obtain the parameter region for which 
chaotic attractors are generated under simple assumption 
where the definition of chaos is that Poincark map pos- 
sesses the unique absolutely continuous invariant measure 
[41. 

CIRCUIT MODEL 

The circuit model is shown in Fig. 1. 

INTRODUCTION 

Recently, various chaotic phenomena have been ana- 
lyzed theoretically. Wider knowledge of this interesting 
nonlinear phenomena will be needed for many fields. For 
example, when engineering systems need very accurate 
control, we have to  consider the influence of the slight 
nonlinearity of the characteristics of the elements, trans- 
fer function and so on. As one effective approach toword 
these problems it  is important to analyze simple and na- 
tive chaos generating systems and to make clear the con- 
dition of the generation of chaos. 

In this aticle, an LCR oscillatot including a nonlin- 
ear inductor with hysteresis saturation characteristics is 
analyzed. This circuit,model consists of only three el- 
ements and it is extremely simple twedimensional au- 
tonomous circuit. Generally, for autonomous systems to 
have chaotic behaviour, the dimension of the phase space 
must be three or more due to the non-crossing trajectory 
property. However, this circuit model generates chaos due 
to the existence of the hysteresis loop. Newcomb et al. and 
Saito have proposed twedimensional chaos-generating au- 
tonomous circuits with hysteresis resistor [1]~[3]. How- 
ever, such circuits are not considered to be in substance 
two-dimensional because the hysteresis loop of resistors 
generates reactive power. Moreover, in their models cur- 
rent through the hysteresis resistor or voltage across it 
jumps when the solution on a branch moves to the other 
branch. On the other hand, in our circuit the dimension of 
the system does not increase because the hysteresis loop of 
inductors corresponds to resistance. Moreover, any vari- 
ables in this circuit does not jump and hence this circuit is 
considered to be very native circuit. It is great interesting 
that this simple and native circuit generates chaos. 

This circuit. model is described by second order differ- 
ential equation piecewisely. Therefore, the PoincarC map 
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Fig. 1 Circuit model. 

This circuit consists of only three elements, that is, a linear 
negative resistor, a capacitor, a nonlinear inductor with 
hysteresis saturation characteristics. The circuit equation 
is represented as follows. 

{ c; I : v - z ( 4 )  (1) 

where U is the voltage across the capacitor, 4 is the flux 
of the hysteresis inductor and i(4) is the current through 
the hysteresis inductor. The 4 - i characterist,ics of the 
hysteresis inductor is shown in Fig. 2. This nonlinear in- 
ductor exhibits constant hysteresis saturation characteris- 
tics as Fig. 2; no minor loops exist. We call each linear 
branch as P+, P-,  O+ and 0-. 

By changing the valuablues; 
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Fig. 2 4 - i characteristics of the histeresis inductor. 

U 

the circuit equation is normalized as follows. 

where H(x) represents hysteresis function and is given as 
follows. 

(1 - a)(1+ P )  on the branch P* : H ( z )  = az f I 2 
(1  - a)(l- P )  1 on the branch Of : H(x) = x f 

2 
(4) 

The transitional conditions between each branch are given 
as follows. 

P + + 0 - :  x = 1  
O - + P + :  x = l  
O-'+P-:  z = - p  
p-+o+: x = - 1  
o++p- :  x z - 1  
o++p+: x = p .  

(5) 

Eq. (3) is linear on each branch and the general solution 
on each branch can be given. An example of the chaotic 
attractors obtained by calculating the general solution of 
Eq. (3) is shown in Fig. 3. 

Though Eq. (3) &second order equation on the each 
branch, the phase space is not simple twwdimensional 
plane due to the existence of the hysteresis loop. There- 
fore, it is difficult to understand the motion of the solution. 
Then, consider the state space to which H(z)-axis is a p  
pended as shown in Fig. 4. Note that H ( z )  corresponds 
to the current i through the hysterisis inductor and it is 
not a independent variable but a dependent variable. 

Fig. 5 shows an example of the chaotic attractor in the 
state space in Fig. 4. The motion of the solution is ex- 
plained as follows. Consider the solution starting from the 
initial point on the branch P-. Because both equirihria on 
the branches P- and O+ exist near the boundary x = -1, 

T 

0 

-3 -p-1 0 1 p  3 
+ x  

Fig. 3 An example of the chaotic attractors 
( a  = 4, p = 1.3, a = 0.12). 

Fig. 4 State space with H(x)-axis. 

the solution oscillates between two branches P- and 0'. 
Here the amplitude of the solution becomes larger by en- 
ergy supplied from the linear negative resistor. When the 
solution reaches the boundary x = p, it enters the branch 
P+. For some proper parameter values, at this moment 
the amplitude of the solution decreases and it starts to 
oscillate between P- and 0-. When the solution rota.tes 
the hysterisis loop, energy is consumed as hysteresis loss. 

POINCARE MAP 

Define the following two half line as Fig. 6. 

(6) 
L+ : x = - - 1 ,  y > o .  { L- : x = 1 ,  y < o .  

where L+ is the transitional condition from P- to 0' and 
L- is that from P+ to 0-. Consider the solution having 

i 
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map. 

F : L+ U L- + L+ U L-,  yo + F(y0). (7) 

An example of the Poincark map is shown in Fig. 7. 

a..\ T 
I 

Fig. 5 An example of the chaotic attractors 
(a = 4, p = 1.3, a = 0.12). 

-3 0 

Fig. 6 Derivation of the Poincark map. 

the initial condition on L+, that is, (I, y) = (-1, yo) (yo > 
0). At first, define Y A  as the y-coordinate of the initial 
point whose flow should be tangent to the transitional 
condition from O+ to P+; 2 = p. The value of yA is given 
implicitly. 

The motion of the solution is distinguished to the fol- 
lowing cases (see Fig. 6). 

(I) when yo < Y A  : The solution reaches z = -1 without 
reaching the trsnsitional condition 2 = p and enters P-. 
The solution in P- reaches L+ again. 
(11) when yo 2 Y A  : The solution hits I = p and enters 
P+. The solution in P+ reaches L-. 

Namely, the solution starting from I/+ never fail to reach 
L+ or L- at some time. Since L-  and L+ locate symmetri- 
cally with respect to  the origin, the solution starting from 
L-  also reaches L+ or L-. Moreover, a point on L+ or L- 
can be represented by its y-coordinate. Therefore, we can 
define the Poincark map as the following one-dimensional 

1 
3 - Yo 

Fig. 7 Poincark map F 
(a = 4, p = 1.3, a = 0.12). 

We define ymoz and ymin as Fig. 8. The value of y,,, (or 
-ZJ~,~) can be obtained as the y-coordinate of the point 
at which the solution starting from (2, y) = (p, 0) reaches 
L+ (or L- )  via O+ and P- (or P'). Here we define the 
following intervals on L+ and L-. 

(8) 
J +  = [Ymin, ymoz] c L+, 
J -  = [-ymo=, -ymin] c L- 

V Y o )  

a2 

Ymin 

Yo / 
0 

Fig. 8 Invariant intervals. 

In the case of F(yma,) < -ymal, the solution diverges to 
infinity. For these parameter values the energy supplied 
from linear negat.ive resistor is considered to be larger than 
that as hysteresis loss. 
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In the case of F(ymoz) > -ymol, interval J +  U J -  is 
invariant with respect to  the mapping F and the solution 
starting from J +  U J -  make an attractor on J +  U J - .  The 
gradient of F on J+ U J -  determins the stability of the 
at t ractor. 

The differential coefficient of F is shown in Fig. 9. 

Fig. 9 Differential coefficient of F 
(a = 4, p = 1.3, a = 0.12). 

Then, we assume t$at the following condition is satisfied. 

[ Condition 1 1 

fied for almost all yo. 
For all parameter values the following equation is satis- 

(9) 

In this case the following theorem is satisfied. 

[ Theorem 1 1  
If the PoincarC map F satisfies the following conditions, 

F possesses the unique absolutely continuous invariant 
measure and chaos is generated. . 

The chaos generating region is shown in Fig. 10. In 
this figure the boundary between Divergence region and 
the region under Divergence region represents the param- 
eter values satisfying F(ym,,) = -ymo+. The boundary 
between Chaos region a$d the region located on the left 
side of Chaos region represents the parameter values sat- 
isfying that t,he left side of Eq. (10) equals to one. As far 
as we carry out computer simulations, Eq. (11) is always 
satisfied in Chaos region. When a or p is large, that is, 
the hysteresis loss is large, chaos is generated for relatively 
large parameter region. 

CONCLUSIONS 

In this article, an extremely simple LCR oscillator with 
a hysteresis inductor have been analyzed. Though this 
circuit model is twc-dimensional autonomous syst,em, it 

I Divergence 

(b) 
Fig. 10 Chaos generating region 

(a) ,B = 1.3, (b) ,B = 1.2. 

generates chaos. Since this circuit is described by second 
order differential equation piecewisely, the PoincarC map 
can be derived as one-dimensional map strictly. For this 
Poincard map the parameter region for which chaotic at- 
tractors are generated under simple assumption. Our fu- 
ture research is to carry out circuit experiments to confirm 
the theoretical results. 
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