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Abstract: In this article, four simple nonlinear circuits 
with time-varying resistors are analyzed. These circuits are a 
kind of parametric excitation circuits and chaotic attractors 
are observed in three circuits. In order to analyze these cir- 
cuits a degeneration technique is used, that is, diodes in the 
circuits are assumed to operate as ideal switches. Thereby 
the Poincard maps are derived as one-dimensional maps and 
chaotic phenomena are well explained. Moreover, justifiability 
of the analyzing method is confirmed by circuit experiments. 

I N T R O D U C T I O N  

Recently, many chaos-generating systems have been p r e  
posed and analyzed in various fields. For parametric exci- 
tation circuits, the Duffing-Mathieu equation have been con- 
firmed to generate chaotic attractors by computer calculations 
[l]. However, there are few discussions about the chaos in 
parametric excitation systems. 

In this article, simple nonlinear circuits with time-varying 
resistors are analyzed. All these circuits consist of two mem- 
ory elements, a diode and a time-varying resistor. These cir- 
cuits are a kind of parametric excitation circuits and chaotic 
attractors are observed in three circuits. In order to analyze 
these circuits in detail, we use a degeneration technique, that 
is, we consider the case that the diodes in the circuits are as- 
sumed to operate as ideal switches. In this case, the Poincar4 
maps can be derived as one-dimensional maps and chaotic 
phenomena are well explained. This analyzing method have 
been proposed by Inaba et al.[2] and have been confirmed to 
be extremely effective to analyze some circuits including a 
diode. Moreover, the justifiability of the analyzing method is 
confirmed by circuit experiments. 

C I R C U I T  MODEL 

Consider the circuits satisfying the following conditions 

1. The circuit consists of two memory elements, a diode, and 
a Time-Varying Resistor (TVR). 

2. The circuit is governed by a twedimensional nonlinear 
differential equation. 

3 .  Both of the diode and the TVR are connected in parallel 
with a capacitor or in series with a inductor. 
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There are four circuits satisfying the above conditions and 
they are shown in Fig. 1. In the figures TVRs represent Time- 
Varying Resistors. The resistance R,(t) and the conductance 
G,(t) of TVRs vary with time as shown in Fig. 2.  The func- 
tion representing the variation of the TVRs is square wave 
with angular frequency wt, and duty ratio p , .  

At first, we approximate the U - i characteristics of the 
diodes by the following twesegment piecewise linear functions 
(see Fig. 3). 

By changing the variables, 

U, = vx,, i, = g v y , ,  

d r ’  E ,  

the normalized circuit equations are given as follows. 
I. Circuit 1. 

Y1 - D l ( 4  XI = { Yl = -21 -Ylfl(r) 

11. Circuit 2. 

2 2  = -zzfz(.) - Yz - OZ(22) { ’  Yz = 5 2  

111. Circuit 3. 

x3 = -23f3(7) - y3 
Y3 = 2 3  - D 3 ( Y 3 )  

IV. Circuit 4. 

(4) 

( 6) 
$4 = Y4 

si4 = - 2 4  - Y4f4(T) - D 4 ( Y 4 )  

where f , (r)  corresponds to the function switching the TVRs 
and is shown in Fig. 4. The function O,(.) corresponds to the 
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(a) Circuit 1. 

id2 :.. 
(b) Circuit 2. 

L3 . 

(c) Circuit 3 

C A  L4 

R4W I I ' 
(d) Circuit 4. 

Fig. 1 Circuit model (TVR is Time-Varying Resistor). 

characteristics of the diodes and is represented as follows. 

Define the following subspaces. 

( ( 2 1 ,  Y,)IG < 11 (2 = 1,2)  { {(G, Y t ) l Y t  > E * }  ( 2  = 3 ,4 ) ,  

{ {(xt,  Y t ) l Y t  5 E t 1  (2 = 3 ,4 ) .  

hr, 

( 8 )  
~ {(rt, Y J I G  2 11 ( 2  = 1,2) 

Becanse Eqs. (3)-(6) are piecewise linear and f , ( ~ )  takes 
only two constant values, the general solutions can be given. 

I 2T 

(a) i= l ,  4. 

Gi(t) 

I 2T 

(b) i=2, 3. 

Fig. 2 Characteristics of the T V F k  

. .  

(a) i= l ,  2. 

v d i (  i i )  
h 

> i; 

(b) i=3, 4. 

Fig. 3 Characteristics of the diodes. 
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Fig. 4 f , ( ~ )  associated with R,( t )  and G,(t) .  

0 - XI 
(a) ( U ]  = 0.04, b l  = 0.58, w1 = 1.4, p l  = 0.5) 
(b) (a1 = 0.11, b l  = 0.60, W I  = 1.4, pi = 0.5, €1 = 0.02) 

The experimental and computer calculated results are 
shown in Figs. 5(a) and (b), respectively. In circuit experi- 
ments, TVR is realized by using an analog switch. We found 
chaotic attractors from the circuits 1-3. In the circuit 4, we 
cannot found chaotic attractors and for any parameter values 
the solution converges to  the origin or diverges. This reason 
is explained as follows. Because the diode in the circuit 4 is 
connected in series with the TVR, the stability of the origin 
is decided by the sum of resistance of the diode when it is off- 
state and resistance of the TVR. The resistance of the diode 
when it is off-state is relatively large. Hence, the negative 
resistance of the TVR is needed to  be larger value in order 
to generate the oscillation, that is, Rd4 < r 4 - .  However, i f  
the oscillation amplitude becomes larger and the diode turns 
on, the solution diverges immediately because the resistance 
of the diode when it is on-state is relatively small. 

IDEALIZATION OF DIODES 

In the following, we analyze the circuits 1-3 by using a 
degeneration technique, that is, we consider the case that the 
diodes in the circuits are assumed to operate as ideal switches. 
This degeneration technique have been proposed by Inaba et 
al. and have been verified to be effective to analyze chaos in 
some circuits including a diode. 

Idealized diodes operate as follows. 
' 2  
4 

1 .  The diode takes either ON-state or OFF-state. 

2. The diode at ON-state operates as a constant voltage 
source with voltage V,  and the diode at  OFF-state oper- 
ates as open. 

-15 I- 
-10 7 

O -+x2 

(a) (a2  = 0.05, b2 = 1.30, w2 = 1.5, p 2  = 0.5) 
(b) (QZ = 0.10, b2 = 1.30, w2 = 1.5, p 2  = 0.5, = 0.01) 

- x 3  

(a) (a3 = 0.01, b3 = 0.48, w3 = 1.25, p3 = 0.5) 
(b) ( a 3  = 0.01, b3  = 0.35, w3 = 1.25, p 3  = 0.5, € 3  = 0.02) 

Fig. 5 Chaotic attractors obtained from (1) Circuit 1, 
(2) Circuit 2,  (3) Circuit 3. 
(a) Experimental results. (b) Computer calculated results. 

3. The diode turns off when the current through it becomes 
zero and turns on when the voltage across it reaches V,.  

This idealization corresponds to the limit (Gd,, Rd,)+(oo, CO) 

in Fig. 3. 
In the case that the above idealization technique is used, the 

circuit equations in the regions M ,  are degenerated as follows. 
I. Circuit 1. 

(9)  
21 = 1 
y'1 = -1 - Y l f I ( 7 )  

11. Circuit 2. 
22 = 1 { y 2  = 1 

111. Circuit 3. 

The transitional conditions to  the regions M ,  from N ,  are 
given as follows. 
I. Circuit 1. 

Y1 = 0 (12) 

(13) 

11. Circuit 2. 

Y2 + M T )  = 0 
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111. Circuit 3. 
23 = 1 

These conditions are derived from the relation id,(v,)  = 0 
(z=I, 2) or vd,(i,) = V,  (i=3). 

In the case that this idealization method is used, the circuit 
equations are degenerated piecewisely and one-dimensional 
PoincarC maps can be derived strictly. We explain the deriva- 
tion of the PoincarC map corresponding each circuit model. 

/- 1. In the circuit 1, when the solution enters the region NI 
from MI, namely when the diode turns off, (q, y l ) = ( l ,  
0) is satisfied. Hence, only the phase of the square wave 
switching the TVR decides the following motion of the 
solution. Then the Poincark map can be derived as one- 
dimensional map which transforms the n-th phase #ln 
into the (n + 1)-th phase as shown in Fig. 6. 
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Fig. 6 Derivation of the Poincark map. 

2. In the circuit 2, the solution in the region MZ must go 
through the point (2, y)=( 1, -aa). Hence, when the solu- 
tion is on the point (1, -az), only the phase of the square 
wave decides the following motion of the solution. There- 
fore, the PoincarC map can be derived as one-dimensional 
map. 

3. In the circuit 3, when the solution enters the region NJ 
from M3, namely when the diode turns on, (23, y3)=(l, 
0) is satisfied. Hence, only the phase of the square wave 
decides the following motion of the solution. Therefore, 
the Poincard map can be derived as one-dimensional map. 

An example of the PoincarC maps obtained from the circuit 
1 is shown in Fig. 7. Though we omit the figures of those 
from the circuits 2 and 3, their PoincarC maps have many 
discontinuity and the orbits seem to be more complicated. 
One-parameter bifurcation diagram is shown in Fig. 8. We 
can see that the chaotic states and the periodic states appear 
in a complicated manner. Moreover, for w z 3 the Poincark 
map is homeomorphic and quasi-periodic attractors are also 

generated . 

CONCLUSIONS 

lr 27r - d l n  

Fig. 7 Poincard map (circuit 1). 
(al  = 0.11, bl = 0.6, w1 = 1.4, p1 = 0.5) 

- w1 
Fig. 8 1-parameter bifurcation diagram (circuit 1). 

(a1 = 0.11, bl = 0.6, p1 = 0.5) 

out circuit experiments and confirmed the justifiability of the 
analyzing results. 
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In this article, we have analyzed four simple circuits with 
time-varying resistors. By using a degeneration technique 
we derived the one-dimensional PoincarC maps and confirmed 
that three circuits model generate chaos. Moreover we carried 
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