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ABSTRACT 

This paper gives rigorous analysis of chaos in two types 
of self-oscillatory circuits containing time delay. The gov- 
erning equation of each circuit is described by 2nd-order dif- 
frrrntial equation containing time delay. By using mapping 
mrthod, we can derive the 1-dimensional Poincark map ex- 
plicitly from each circuit, and the Poincart. map is proved to 
have a positive Liapunov number with computer assistances. 
Moreover the proposed circuits are realized easily so that the 
theoretical results can be verified experimentally. 
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(1) Circuit-1 (2) Circuit-2 

Fig.1 Circuit models 

1. INTRODUCTION 

Many self-oscillatory systems containing time delay have 
hecn studied. Recently, chaotic phenomena are observed in 
such systems[l]~[3] .  For example, Ueda et al.[2] and Kouda 
et a1.[3] have investigated the Minorsky's system in detail. 
The Minorsky's system is an example of self-oscillatory sys- 
tems, and the governing equation (the Minorsky's equation) 
is described by the nonlinear difference-differential equation. 
It exhibits chaos when that system has the large time de- 
lay[2] or the higher-order nonlinear characteristics[3], and 
thesc results are verified by the computer simulations. How- 
ever the theoretical evidence of chaos has not yet been clari- 
fied, since it is very difficult to solve the nonlinear difference- 
diferential equation strictly. 

On the other hand, 1-dimensional mappings are mathe- 
matically studied in detail. For example, the sufficient con- 
dition where the mapping has a positive Liapunov number 
is given by Lasota, Li and Yorke[4][5]. 

In this paper, we propose two types of self-oscillatory 
circuits containing time delay which exhibit chaos, and ana- 
lyze them strictly. The governing equation of each circuit is 
described by 2nd-order differential equation containing time 
delay. By using mapping method, the Poincark map can be 
derived explicitly as a 1-dimensional map from each circuit. 
Furthermore we obtain the chaos generating condition where 
the mapping has a positive Liapunov number, and show the 
chaos generating region in parameter space by computer cal- 
culations. Lastly the theoretical results are verified by circuit 
experiments. 

2. CIRCUIT MODELS 

Fig.1 shows the circuit models. In this figure, -g is a 
linear negative conductance, and each constant is selected so 
that o can vibrate. Each circuit consists of a -gLC oscillator 
and a loop which controls an amplitude of circuit. 

Fig.2 shows the switching operation and the pulse gen- 
erating operation. 

(a) if v < v,, 
the switch is connected to -g (circuit-1) 
the pulse is not added (circuit-2) 

(b) if o 2 &,, 
the switch is connected to G (circuit-1) 
the pulse(V) is added (circuit-2) 

In the case where time delay(Td) is contained in this opera- 
tion] chaotic phenomena are generated in each circuit. 

,Av/')< - threshold voltage 

i t  is chosen properly 

l i  
! .' , ,  
I ,  

Fig.2 Switching operation (Circuit-1) 
and pulse generating operation (Circuit-2) 
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The normalized equation of the circuit-1 is represented 
as follows: 

and f(u) is switching operation and is represented by 

2 + f(z(T - 7 d ) ) z  + z = 0 (1) 

where 

On the other hand, the normalized equation of the circuit- 
2 is represented as follows: 

2 - 262 f z = f(z(7 - T d ) )  ( 2 )  

and f(u) is pulse generating operation and is represented by 

a i f u > 1  
0 otherwise 

where 

&G - g) = - 2 6 ,  V . G = LY. 

Fig.3 shows an example of the chaotic attractor generated 
in each circuit. 

Fig.3 Chaotic attractor 

3. DERIVATION OF POINCARE MAP AND ITS 
ANALYSIS 

The Poincark map of each circuit can be derived explic- 
itly as a 1-dimensional map. In this section, we explain the 
derivation of the Poincark map and its analysis by using the 
circuit-1. 

Fig.4 shows the vector field on the z - Z plain. 

- X +  

Fig.4 Vector field on the z - i: plain 

As an initial condition, the following case is considered: 

(7.,z, 2) = (O,zo, 0). (3) 

w e  define L and L t h  as 

L = { z , Z  I z < 0 , z  = 0) 
L t h  = (2, z I = 1). 

Furthermore let M be the value of z at an initial point on 
L whose flow should be tangent to the line L t h .  M is repre- 
sented explicitly as 

W 1  M = - exp { -$(r - 0 ) }  where O = arctan -. (4) 

Now we discuss the solution whose initial condition is 
represented by Eq.(3). The following movements of the sc- 
lutions are divided into two cases (I) and (11). 

61 

(I) Case M < 20 < 0 ( 0 in Fig.4) 
The solution crosses L again at r = 2*/wl without 
reaching the threshold L t h .  

(11) Case zo < M ( Q in Fig.4) 
The solution starting from L crosses L t h  at (r,z, z) = 
(71,z1,1). The solution continues to rotate divergently 
around 0 until 7 = q + T d .  The solution crosses Lth 

again at (r,z, z )  = ( T ~  + T ~ ,  x2, 1). Then, the solution 
rotates convergently around 0 from (T, z, z )  = ( T ~  + 
For the sake of simplicity, we consider the case where 
(z4, Z4) satisfies the following condition: 

Tdj  23, 2 3 )  to  (71 + 72 + T d ,  2 4 ,  2 4 ) .  

2 4  > O , Z 4  < 1 or 

When this condition is satisfied, the solution starts to 
rotate divergently and crosses L again at (7, z, Z) = 

z4 < 0, i 4  < 0. 

(71 + 72  + 73 + T d ,  z5,o). 
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Therefore, the Poincark map F can be defined as a 1- 
dimensional map: 

F : L -+ L ,  X O  + F ( x o )  

where 2 0  is the z-coordinate a t  the initial value on L and 
F ( z o )  is the z-coordinate at the point on L which the solu- 
tion leaving L returns back. F can be represented explicitly. 
However the concrete representation of F is omitted due to 
space restrictions. Fig.5 shows an example of F .  

- 1 . 3  

// 

Fig.5 PoincarC map 
(61 = 0.015, 62 = 0.9, WITd = T )  

In discussing about F ,  the definition is given. 

[Definition 11 
An interval J in L is said to be invariant if F ( J )  c J. 
And the invariant interval J is said to be stable if there 
is some interval J' 3 J and some positive integer n 
such that F " ( X )  c J for all X E J', where F" denotes 
n-times composite of F .  # 

In the following discussions, we consider the case where 
the two extrema M and S satisfy the following condition 
(see Fig.5): 

F ( M )  > S. (5) 

J = [F(M),  F 2 ( M ) ] .  (6) 
Define 

If Eq.(5) is satisfied, the interval J is invariant and stable, 
and further F has a unique extremum F ( M )  in J .  

[Theorem 1][4][5] 
We assume that F : J  + J.  If 

is satisfied. It is known that F has the unique ab- 
solutely continuous invariant measure and also F is 
ergodic. # 

Then if Eq.(7) is satisfied, the mapping has a positive 
Liapunov number. Therefore, in this paper we regard that 
chaos is generated when Eq.(7) is satisfied. 

As concerns the Poincar6 map F, we obtain below three 
equations: 

zo-+M+O- lim F(z0)  = zo+M+O+ lim F(xo) (8) 

= exp (s) > 1 [M < xo 5 F2(M)]  (9) dzo 

- -CO [w17;1 # 81. (10) 
dF 

W+M+O- dxo  
lim - - 

Eq.(8) shows that the value of F is continuous at  M .  Eqs.(9) 
and (10) show that the differential coefficient of F is discon- 
tinuous at  M .  

In the following discussions, we assume that the following 
condition is satisfied: 

This assumption is verified by computer calculations. 
Then, if 

cl <-1 
dzo  i o = F ( M )  

is satisfied, Eq.(7) is satisfied. Therefore we regard Eq.(12) 
as the chaos generating condition. Fig.6 shows the chaos 
generating region in two-parameter space. 

Fig.7 shows oneparameter bifurcation diagram. 
Similarly, it can be proved that the circuit-2 exhibits 

chaos in the sense of theorem-1. 
Lastly some of the typical experimental results and the 

corresponding simulated results are shown in Fig.8. In these 
experiments, 61 and Td are fixed, and 62 is used as a param- 
eter. Experimental results match the theoretical ones very 
well both qualitatively and quantitatively. 

0 .  3 4  

s 

7r 

0 0. D l 5  0.  0 3  

61 - 
Fig.6 Chaos generating region 

(WITd  = T )  
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4. CONCLUSIONS 

Fig.7 I-parameter bifurcation diagram 
(61 = 0.015, wlrd  = T )  

I -  
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Fig 6-2 Periodic S O I U L I ~ I I  
w ich  period 2 

( A )  6:. = 0.140 
(B) 6: = 0.1'24 

I -  

Fig 8-3 Periodic solution 
w:b period 3 

( A )  6 ,  = 0.190 
(B) 62 = O.l i3  

Fq.b---. Chaos 
( A )  6 ,  = 0 570 
(B)  6: = 0.55C 

We hzve proposed two types of self-oscillatory circuits 
containing time delay which exhibit chaos and have analyzed 
them strictly. By using mapping method, we could derive the 
1-dimensional Poincard map explicitly from each circuit, and 
the Poincark map was proved to have a positive Liapunov 
number with computer assistances. Moreover the theoretical 
results were verified by circuit experiments. 
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Fig.8 Experimental results(B) 
and corresponding simulated results(A) 

(6, = 0.015, u1Td = r )  
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