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ABSTRACT

This paper gives rigorous analysis of chaos in two types
of self-oscillatory circuits containing time delay. The gov-
erning equation of each circuit is described by 2nd-order dif-
ferential equation containing time delay. By using mapping
method, we can derive the 1-dimensional Poincaré map ex-
plicitly from each circuit, and the Poincaré map is proved to
have a positive Liapunov number with computer assistances.
Moreover the proposed circuits are realized easily so that the
theoretical results can be verified experimentally.

1. INTRODUCTION

Many self-oscillatory systems containing time delay have
been studied. Recently, chaotic phenomena are observed in
such systems[1]~[3]. For example, Ueda et al.[2] and Kouda
et al.[3] have investigated the Minorsky’s system in detail.
The Minorsky’s system is an example of self-oscillatory sys-
tems, and the governing equation (the Minorsky’s equation)
is described by the nonlinear difference-differential equation.
It exhibits chaos when that system has the large time de-
lay[2] or the higher-order nonlinear characteristics[3], and
these results are verified by the computer simulations. How-
ever the theoretical evidence of chaos has not yet been clari-
fied, since it is very difficult to solve the nonlinear difference-
differential equation strictly.

On the other hand, 1-dimensional mappings are mathe-
matically studied in detail. For example, the sufficient con-
dition where the mapping has a positive Liapunov number
is given by Lasota, Li and Yorke[4][5].

In this paper, we propose two types of self-oscillatory
circuits containing time delay which exhibit chaos, and ana-
lyze them strictly. The governing equation of each circuit is
described by 2nd-order differential equation containing time
delay. By using mapping method, the Poincaré map can be
derived explicitly as a 1-dimensional map from each circuit.
Furthermore we obtain the chaos generating condition where
the mapping has a positive Liapunov number, and show the
chaos generating region in parameter space by computer cal-
culations. Lastly the theoretical results are verified by circuit
experiments.

2. CIRCUIT MODELS

Fig.1 shows the circuit models. In this figure, —g is a
linear negative conductance, and each constant is selected so
that v can vibrate. Each circuit consists of a —g LC oscillator
and a loop which controls an amplitude of circuit.
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Fig.1 Circuit models

Fig.2 shows the switching operation and the pulse gen-
erating operation.
(a) f v <V
the switch is connected to —g (circuit-1)
the pulse is not added (circuit-2)

(b) if v > Vi
the switch is connected to G (circuit-1)
the pulse(V') is added (circuit-2)

In the case where time delay(7}) is contained in this opera-
tion, chaotic phenomena are generated in each circuit.
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Fig.2 Switching operation (Circuit-1)
and pulse generating operation (Circuit-2)
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The normalized equation of the circuit-1 is represented
as follows:
i+ flz(r—m))z+z=0 (1)

and f(u) is switching operation and is represented by

28, fu>1
fw) = { —28; otherwise

where

On the other hand, the normalized equation of the circuit-
2 is represented as follows:

§— 265+ 2 = f(a(r — 7)) (2)

and f(u) is pulse generating operation and is represented by

f(u)={a ifu>1

0 otherwise

\/%(G—g):—?é, V-G=o.

Fig.3 shows an example of the chaotic attractor generated
in each circuit.

where

(2) Circuit-2

(1) Circuit-1
(6,=0.02,0a=1lwimg =)

(61=0.02,8, = 0.6, w174 = )

Fig.3 Chaotic attractor

3. DERIVATION OF POINCARE MAP AND ITS
ANALYSIS

The Poincaré map of each circuit can be derived explic-
itly as a 1-dimensional map. In this section, we explain the
derivation of the Poincaré map and its analysis by using the
circuit-1.

Fig.4 shows the vector field on the z — z plain.
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Fig.4 Vector field on the z — & plain

As an initial condition, the following case is considered:
(t,z,2) = (0,20, 0). (3)
We define L and Ly, as

L={z#|z<0,z=0}
Lo ={z,4|¢=1}.

Furthermore let M be the value of z at an initial point on
L whose flow should be tangent to the line Ly,. M is repre-
sented explicitly as

where § = arctan =% (4)
1

= o |- a)

Now we discuss the solution whose initial condition is
represented by Eq.(3). The following movements of the so-
lutions are divided into two cases (I) and (II).

(I) Case M < zo<0( @ in Fig.4)
The solution crosses L again at r = 2x/w; without
reaching the threshold L.

(IT) Case g < M ( (@ in Fig.4)
The solution starting from L crosses Ly, at (1,z,2z) =
(71, 21,1). The solution continues to rotate divergently
around O until 7 = 1y 4+ 75. The solution crosses Ly
again at (7,z,%) = (11 + 72,22,1). Then, the solution
rotates convergently around O from (7,z,z) = (r; +
Tay T3, 23) to (11 + T2 + Ty, T4, T4).
For the sake of simplicity, we consider the case where
(24, 4) satisfies the following condition:
z,>0,2, <1 or 2,<0,z,<0.
When this condition is satisfied, the solution starts to
rotate divergently and crosses [ again at (r1,2,2) =
(T] +n+T + Td, 15,0).
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Therefore, the Poincaré map F can be defined as a 1-
dimensional map:

F:L—> L, 9:0—»F(:l:0)

where g is the z-coordinate at the initial value on L and
F(z) is the z-coordinate at the point on L which the solu-
tion leaving L returns back. F can be represented explicitly.
However the concrete representation of F' is omitted due to
space restrictions. Fig.5 shows an example of F.

FiM

Fig.5 Poincaré map
(61 =0.015,6, = 0.9, wy7g = 7)

In discussing about F, the definition is given.

[Definition 1]
An interval J in L is said to be invariant if F(J) C J.
And the invariant interval J is said to be stable if there
is some interval J' D J and some positive integer n
such that F™(X) C J for all X € J', where F* denotes
n-times composite of F. #

In the following discussions, we consider the case where
the two extrema M and S satisfy the following condition
(see Fig.5):

F(M) > S. (5)

Define

J = [F(M), F*(M)). (6)
If Eq.(5) is satisfied, the interval J is invariant and stable,
and further F has a unique extremum F(M) in J.

[Theorem 1][4](5]
We assume that F:J — J. If

dF

> 1 for almost all zp € J (7)
dZO

is satisfied. It is known that F has the unique ab-
solutely continuous invariant measure and also F' is
ergodic. #
Then if Eq.(7) is satisfied, the mapping has a positive
Liapunov number. Therefore, in this paper we regard that
chaos is generated when Eq.(7) is satisfied.
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As concerns the Poincaré map F, we obtain below three
equations:

lim F(z¢) =

29> M40~ i, o (o) ®)

20— M+

d—F=exp (%1-) >1 M <z < FA(M)] (9)

dzg

. dF
zo—-!I)l]:fI}i.O' i [wirs # 6).
Eq.(8) shows that the value of F is continuous at M. Egs.(9)
and (10) show that the differential coefficient of F is discon-
tinuous at M.
In the following discussions, we assume that the following
condition is satisfied:

&F

dxy?

~—00

(10)

>0 [S<zo< M (11)
This assumption is verified by computer calculations.
Then, if
dF

E < -1

(12)
zo=F(M)

is satisfied, Eq.(7) is satisfied. Therefore we regard Eq.(12)
as the chaos generating condition. Fig.6 shows the chaos
generating region in two-parameter space.

Fig.7 shows one-parameter bifurcation diagram.

Similarly, it can be proved that the circuit-2 exhibits
chaos in the sense of theorem-1.

Lastly some of the typical experimental results and the
corresponding simulated results are shown in Fig.8. In these
experiments, é; and 7, are fixed, and §; is used as a param-
eter. Experimental results match the theoretical ones very
well both qualitatively and quantitatively.
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Fig.6 Chaos generating region
(nra=7)
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4. CONCLUSIONS

We have proposed two types of self-oscillatory circuits
containing time delay which exhibit chaos and have analyzed
them strictly. By using mapping method, we could derive the
1-dimensional Poincaré map explicitly from each circuit, and
the Poincaré map was proved to have a positive Liapunov
number with computer assistances. Moreover the theoretical
results were verified by circuit experiments.
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Fig.§-2 Periodic solution
with period 2

(A) & =0.140

(B) & =0.124

Fig.8-3 Periodic solution
with period 3

(A) 6, = 0.190

(B) 6= 0.173

Fig.n-s  Chaos
(A) b = 0570
(B) & = 0.536

Fig.8 Experimental results(B)
and corresponding simulated results(A)
(61 = 0.015, wy 7y = 7)
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