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Abstract

Two types of windows are found in a symmetric circuit,
which cannot be seen in a logistic map and are inherent
in the symmetric structure of this circuit. The purpose
of this paper is to derive Poincaré map strictly as a one-
dimensional map from the circuit and to prove rigorously
that the two types of windows appear alternately and in-
finitely inside some windows.

1 INTRODUCTION

Symmetric structures are often observed in chaos generat-
ing circuits. ”Symmetry” is one of the features which char-
acterize chaos generating circuits. Therefore, it is of great
importance to investigate bifurcation phenomena character-
ized by the symmetry of circuits.

In the meantime, some symmetric one-dimensional maps
have been studied. For example, J. Testa et al. have in-
vestigated a cubic map and have discovered the two types
of windows which cannot be seen in a logistic map [1]: one
exhibits complex bifurcation phenomena such as symmetry
breaking and symmetry recovering in its own region, while
the other is the windows appearing on the condition that
one chaotic attractor bifurcates to two distinct periodic at-
tractors. These windows have interesting bifurcation struc-
tures and seem to be deeply related to those of symmetric
systems.

We find these two types of windows in a symmetric cir-
cuit. which are similar to the windows generated in a cubic
map [1]. The purpose of this paper is to analyze these
windows rigorously by using a degeneration technique as
shown in [2][3]. This degeneration means that the diode in
the circuit is assumed to operate as an ideal limiter. In this
case, Poincaré map is derived strictly as a one-dimensional
map. Especially it is proved rigorously that the two types
of windows appear alternately and infinitely inside some
windows with some reasonable assumptions by utilizing a
certain scaling mechanism on the Poincaré map.

2 CIRCUIT MODEL

We consider the circuit in Fig. 1 whose structure is sym-
metric with respect to the origin. This circuit consists of
three memory elements, one linear negative resistance and
only one nonlinear resistance which consists of two diodes.

At first, we approximate the ¢ — v characteristic of the
nonlinear resistance as the following 3-segment piecewise-
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linear function as shown in Fig. 2(a).

Ud(i2)=‘r‘d/2 (|i2+V/Td|—|i2—V/Td|). (1)

il i'.!
—

LS

L CT>V l

Fig. 1 Circuit model.
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Fig. 2 The 7 — v characteristic
of the nonlinear resistance.

Then the governing equation of the circuit in Fig. 1 is
described by a piecewise-linear third order ordinary differ-

ential equation.

diy } dlz . dv
le—t = v+riy, de—t = v —vy(ia), Cg

===t (2)

In order to investigate the phenomena observed from our
circuit, we use the degeneration technique, which means
that the nonlinear resistance in the circuit operates as an

ideal limiter as shown in Fig. 2(b). We have already verified

that this method is effective to clarify the mechanism of
chaos for a circuit family including one diode [3]. In this

case the solution of Eq. (2) seems to be well explained by

the following Ideal Model.
[Ideal Model]
@ Wheny >0,

z a 0 1 z+ 1/
gl=10 0 1 y—1/a8
z -1 =g 0 z-1
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@ Wheny=0,
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® When y <0,
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z a 0 1 z—1/a
gl=10 0 1 y+1/a8 |, (3)
z -1 =g 0 z+1
where
L,C
i = Eyg;7 in = 1 Vy, v=Vz, t=L,Cr
L1 L2
. C— L]_ Vzlz_ ”n 71_d
7 L_l_a' Lz—ﬂy rdL_z_‘yy) —dTY (4)

These equations in the regions @, @ and Q) are connected
by the following transitional conditions.

O—0Q : Q-0 : (5)
Q-0 : O—Q :
Since the circuit equation is piecewise-linear, the general
solutions in each region can be explicitly given.
Define the subspaces D* : y > 0, D°:y =0and D~ :
y <0

y=0,
z= -1,

z=1,
y=0.

3 POINCARE MAP

Figure 3 shows the projection of the vector field onto z-z
plane. We défine the following subspaces.

Bt {(I,y,2)52=i1' y=0},
Lt = {(z,9,2):2 >0,y =0,z =-0.2},
L7 = {(z4,2):2<0y=02:=02} (6)

The subspaces B* means the transitional condition @— O
while B~ means the transitional condition @— @ .

First let A be the z-coordinate of the initial point on L*
whose flow should be tangent to the line B~ at z = 0.

We discuss the solution having the initial value at a point
on L*. If the parameters are chosen properly, the solution
which leaves the line L* hits L* again at some time.

1. Case 0 < z¢o < A4 : The solution totates divergently
around O constrained onto D° and it hits L~ without reach-
ing the threshold z = —1.

2. Case A < z¢ : The solution hits the line B~ and en-
ters D~ at some time. The solution which entered D~ hits
the plane D°. We consider the case that the point exists
in the hatched region which is illustrated in Fig. 3. If the
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Fig. 3 Vector field. Fig. 4 Poincaré map f.
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point exists in this region, the solution which is back on D°
starts to rotate divergently around O constrained onto D°
and hits L~.

Therefore, a discrete one-dimensional map which trans-
forms a point on L* into a point on L~ can be defined.
f: L*—=1L", (7)
where z¢ is the z-coordinate of the initial point on L* and
f(zo) is the z-coordinate of the point on L~ which the so-
lution leaving from L* hits L~. Since Eq. (6) is symmetric,
we could obtain the map f’ which transforms a point on L~
into a point on L*. The map f’ has the same form as [.

In the following discussions, we fix § at 3 and choose «
as a bifurcation parameter.

Figure 4 shows an example of the map f. Let Q be the
point on L* at which f has an extremum and let —z,,,; be
f(Q). Define two intervals J* = [f'(—Zmaz), Tmaz] C LY
and J~ = [f(Zmaz); —Zmaz] C L~ as shown in Fig. 4.

Define

zo — f(z0)

F=fof, F=fof. ()

Hereafter, we use a superscript ”*” on an interval which
is a part of J* and similarly we use ”~” on an interval which
is a part of J™.

Figure 5 shows examples of the windows which are found
in the bifurcation diagram on L*. These windows are sim-
ilar to those generated in a cubic map. We call the window
in Fig. 5(a) as the window of Type 1 and also the window
in Fig. 5(b) as the window of Type 2.

3.1 THE WINDOW OF TYPE 1

We discuss the mechanism of the window of Type 1.

Let Line-A*, Line-A~, Line-B* and Line-B~ be the lines
which satisfy f(z) = —z, f'(z) = —z, F(z) = z and
F'(z) = z, respectively.

Consider the composite map fo f'o f. Figure 6 shows an
example of fo f'o f. As  increases, fo f'o f(Q) descends
as shown in Fig. 6. The neighborhood of @ is shown in
Fig. 7. As far as we carry out the computer simulations,
the following situations exist. ’

[ Situation 1 ]

1. At @ = a,, fo f'o fis tangent to the Line-A™* in the
0.9 m e o

0.7

0.41

(a)
Fig. 5 Windows (1)zo = Q, (2)zo = -Q




neighborhood of @. F has two periodic points near @ for
a1 € @ € Omaz- At least for a,; < @ < ay,; one is stable
periodic point and the other is unstable periodic point. Let
the former be z,; and also latter be z,;.

2. At @ = a1, @ is equal to z,;. Thatis, fof'of(Q) = -Q
is satisfied.

3. At a = agy, F3(Q) is equal to z,,.

Define the intervals J; = [z},,z,] C J* and J5
[-z%;, —z41] € J~ as shown in Fig. 7, where fof'of(z}))
For aa; < & < aai, Ji and J5 are invariant with
respect to F* and F®, respectively, since

foflof:Jf—=J;, flofo

are satisfied.
That is, the following situations are satisfied.

—Ty1.

flodg=Js 9

1. At a = a4, the composite map F? is tangent to the
Line-B* (A in Fig. 8) and a tangent bifurcation occurs.

2. At o = ay), F3(Q) = Q is satisfied (B in Fig. 8).
That is, @ becomes a superstable fixed point. If o increases
beyond a,,;, three extrema appear near Q on F? (C in Fig.
8).

3. At a = ay, F3(Q) is equal to z,, (F in Fig. 8) and an
interior crisis occurs.

Therefore, 3-periodic window appears for a,; < a < ay;.

Especially, for ay; < a < a,; two invariant intervals J3,
and J} appear in J§ as shown in Fig. 9. In the case these
intervals exist, any point in Ji, are not transformed into
J3, and also any point in J3; are not ttansformed into J3,.
Therefore, in this parameter range, two distinct orbits exist;
one passes through J3, and J3; alternately, and the other
passes through J3 and J:,, alternately.
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Fig. T The neighborhood
of Qon fo flof.
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Fig. 8 The neighborhood Fig. 9 Two invariant
of Q@ on F3, intervals J3, and J3;.

3.2 THE WINDOW OF TYPE 2

—X

Next, we discuss the mechanism of the window of Type
2

-
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Consider the composite maps f'o fo f'o f and fo f'o
foff thatis, F? and F?. As « increases, F?(Q) descends
down. As far as we carry out the computer simulations, the
following situations exist.

[ Situation 2 ]

1. At o = ata3, F? is tangent to the Line-B* and a tangent
bifurcation occurs. F2? has two 2-periodic points near Q for
gy < a < ag. At least for a, < a < a, one is stable
2-periodic point and the other is unstable 2-periodic point.
Let the former be z,; and also the latter be z,;.

2. At a = a2, Q is equal to z,; (superstable).

3. At a = agn, F*(Q) is equal to z,; and an interior crisis
occurs.

4. For a,; < @ < ag, invariant intervals J} = [z1,,1,2] C
J* and JJ = [~zl;,—T4] C J~ can be defined in J*.
where F?(zl;) = z4,.

Therefore, 2-periodic window appears for a,; < a < ags.

For the purpose of simple explanation of this mechanism.
the maps f and f’ at @ = a,, are shown with being over-
lapped in Fig. 10. We consider the orbit starting from @
in J*. The point Q is transformed into a point in J~ by
f. Thereafter, the point in J~ is transformed into a point
in J* by f'. Figure 10 clearly shows that the orbit start-
ing from Q make the periodic attractor which returns to
Q through four periodic points in J~ and J* alternately.
Note that the positions.of the points in J* included in the
periodic attractor are different from that in J~. Namely. in
this case asymmetric attractor appears in the circuit.

4 SCALING MECHANISMS

As mentioned in the previous section, the composite map

fo f'of makes the invariant interval Ji near Q for a,; <
a < ;. We define two maps T, and T, as follows.

Te = foflof: J;—'J:!—v

T'= flofof: J —Ji (10)

Moreover, we rewrite J;” = [z),,z,1] as I* = [/, m] and also
Ji = [-zl;,—zwu] as I~ = [=l,~m]. In that follows, we
shall consider about T, and T, for only a,) < a < ay;.

[ Theorem 1 |
If T, satisfies the following ( Condition ), there exist
the windows which appear in the following order.

Type1:3x3 3x5 3Ix7 Ixn
NSNS\ S /' \ e
Type 2 : Ix2 3Ix3 3Ixd x 2
(n=3,45-) (11)

where the numbers represent periods of the windows when
it appears.

( Condition )

1. The map T, satisfies the Schwarzian condition [4].

2. The map T, has a unique extremum Q in /™.

3. As o increases continuously, the map T, changes contin-
uously from T,,, to Ty, where T, (z) = —z is satisfied for
onlyz=m a.nd oq(z) = ~1 is satisfied for only z = Q as
shown in Fig. 11.



Since T/, has the same form as Ty, if T, satisfies the above
conditions, T also satisfies similar conditions.
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Fig. 11 T,.
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Fig. 10 f.
[ Proof ]

At first. we consider the composite map T, o T,. Here
we define the interval [§ = [l2,m2] where T, o T,(l;) =
T o Ta{ma) = ba.

As o increases, T 0 T,(Q) changes at least from m; tom
continuously, because T,,, (Q) = —! is satisfied and T(—!()
always is equal to m.

Moreover, we consider about the form of T, 0 T), o 7}, in
IF. In order to investigate the form of T, 0.T. o T, we
examine the derivative of T, 0 T/, o T,. From the form of T,
and T, o T,, following equation is satisfied.

D{Ta o T, 0 Tu(2)} { Soec Ezlgl]t’)[[ziﬂz] (12)

where T. o T,(e1) = TooTa(ea) = Q (2 < e < Q@ < ez <
m,). Therefore, the composite map T, o T o T, has three
extrema in [ .

As « increases, T, o T, 0 T, (Q) changes at least from —{;
to —m. because T, oT,,(Q) = m is satisfied by the above
discussion and T,(m) always is equal to —m. Namely, as
« increases, the neighborhood of Q ascends and intersects
the Line-A¥ at some parameter. If Condition 1 (Schwarzian
condition) is satisfied, the number of intersections of T, ¢
T! o T, and the Line-A* in I; is two. Therefore, there
exists a parameter range a,; < & < ag3 where the similar
situations to the Situation 1 occur in the neighborhood
of Q and a window of Type 1 appears. The period of this
window is three with respect to T,, therefore, the period is
3 x 3 with respect to the original map F'.

We define the interval I7 = [l3,m;] where T, 0 T} o
T,([3) =T, 0 Th 0 Ta(ms) = —15.

Next, we consider the composite map T, 0T, 0T, 07, in
I} In order to investigate the form of T, 0 T, 0 T o T,, we
examine the derivative of T, 0 T, 0 T}, 0 T,,. From the form
of T! and T, o T, o T,, the following equation is satisfied.

D{TLOTQOT‘IJOTQ(z)} { ; g ez C [13, 83] V] [Q, e,] (13)

ez C [63,Q]U [Cg,mS]

where T,0T! 0T, (e3) = TooT 0T,(es) = QI3 <e3< Q<
eq < m3). Therefore, the composite map T, 0T, 0T, 0T,
has three extremum in I3 .

As a increases, T, oT, 0T, 0T,(Q) changes at least from [,
to m, because Ty, o T, 0T, (Q) = —m is satisfied by the
above discussion and T;z—m) always is equal to m. Namely,

as « increases, the neighborhood of @ ascends and intersects
the Line-B* at some parameter. Therefore, there exists a
parameter range a,, < & < 044 where the similar situations
to the Situation 2 occur in the neighborhood of Q and
a window of Type 2 appears. This window appears after
disappearance of the above-mentioned 9(= 3 x 3)-periodic
window of Type 1, that is, a,, must be larger than ay;,
because T, , 0 Ty, 0 T, ,, © T, (Q) is smaller than [;. The
period of this window is two with respect to T,, therefore,
the period is 3 x 2 with respect to the original map F'.

We define the interval I = [l,,m,] where T, 0T, 0T/ o
Tall) =TooT, 0T, 0 Toa(my) = L.

The form of T, 0 T, 0 T! o T, in I, resembles T o T, in
I, Therefore, the similar situation to those of T) o T, in
I3 could be considered for T, 0T, 0T, 0T, in I] and we can
repeat the similar discussion. Then we can say 15(= 3 x 5)-
periodic window of Type 1 appears. In this way, the above
discussions can be repeated infinitely. As a result, we get
the above [ Theorem 1 ]. Q.E.D.

Finally, experimental results are shown in Fig. 12. The
windows of Type 1 and Type 2 are shown in Figs. 12(b)
and (d), respectively.

(a) (®) (e) (d) (e)

Fig. 12 Experimental results.

5 CONCLUSION

In this paper, the two types of windows generated in a
symmetric circuit have been investigated. By using a de-
generation technique, we have derived Poincaré map strictly
as a one-dimensional map. We make clear the mechanisms
of these two types of windows and prove rigorously that
the two types of windows appear alternately and infinitely
inside some windows with some reasonable assumptions by
utilizing a certain scaling structure on the Poincaré map.

The generation of the windows discussed in this paper
would be universal in symmetric chaos generating systems,
because this circuit is extremely simple.
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